INTRODUCTION

Jo, Heeseung

I Course Theme:
Abstraction Is Good But Don't Forget Reality

Most CS and CE courses emphasize abstraction

 Abstract data types
« Asymptotic analysis

These abstractions have limits

« Especially in the presence of bugs
 Need to understand details of underlying implementations

Useful outcomes

« Become more effective programmers

- Able to find and eliminate bugs efficiently

- Able to understand and tune for program performance
 Prepare for later "systems" classes

- Compilers, Operating Systems, Networks, Computer Architecture, Embedded
Systems

I Great Reality #1:
Ints are not Integers, Floats are not Reals

Example 1: Is x? = 07

loai 2.0 s 1306... 1,307, .. L, 32767...-32,768.. |...-32,767-..-32,766 ...

v e || S| [-
B | R e R

- 40000 * 40000 = 1600000000
- 50000 * 50000 = -1794967296 (overflow)

e Float's: Yes! B

Example 2: Is (x +y) +z=x+ (y + 2) ?

 Unsigned & Signed Int's: Yes!
 Float's:
- (1e20 + -1e20) + 3.14 --> 3.14
- 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571 3

I Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

Similar to code found in FreeBSD's implementation of getpeername()

There are legions of smart people trying to find vulnerabilities
in programs

I Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

I Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void #*user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);

I Computer Arithmetic

Cannot assume all "usual" mathematical properties

« Due to finiteness of representations

 Integer operations satisfy "ring" properties
- Commutativity, associativity, distributivity

 Floating point operations satisfy "ordering" properties
- Monotonicity, values of signs

Observation

 Need to understand which abstractions apply in which contexts

e Important issues for compiler writers and serious application
programmers

I Great Reality #2:
You Need to Know Assembly

Chances are, you'll never write programs in assembly

« Compilers are much better & more patient than you are

But: Understanding assembly is key to machine-level execution
model

e Behavior of programs in presence of bugs
- High-level language models break down
« Tuning program performance
- Understand optimizations done / not done by the compiler
- Understanding sources of program inefficiency
« Implementing system software
- Compiler has machine code as target
- Operating systems must manage process state
e Creating / fighting malware

I Assembly Code Example

Time Stamp Counter

« Special 64-bit register in Intel-compatible machines
« Incremented every clock cycle
e Read with rdtsc instruction

Application

e Measure time (in clock cycles) required by procedure

double t;

start_counter();

PO

t = get_counter();

printf("P required %f clock cycles\n", t);

I Code to Read Counter

Write small amount of assembly code using GCC's asm facility

Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *1lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *10)
{
asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: ll=rll (*hi)) ll=rll (*10)
. "%edx", "%eax");
}

10

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

Memory referencing bugs especially pernicious

« Effects are distant in both time and space

Memory performance is not uniform

« Cache and virtual memory effects can greatly affect program
performance

e Adapting program to characteristics of memory system can lead to
major speed improvements

Memory 1s not unbounded

« It must be allocated and managed
 Many applications are memory dominated

11

I Memory Referencing Bug Example

{

double fun(int 1)

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

} volatile: Don't be optimized by compiler
fun(0) 3.14

fun(1) 3.14

fun(2) 3.1399998664856

fun(3) 2.00000061035156

fun(4) 3.14, then segmentation fault

Result 1s architecture specific

12

I Memory Referencing Bug Example

double fun(int 1)
{

return d[0];

volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */

} volatile: Don't be optimized by compiler
fun(0) 3.14
fun(1) 3.14
fun(2) 3.1399998664856
fun(3) 2.00000061035156
fun(4) 3.14, then segmentation fault
Explanation: Saved State 4
d7 ... d4 3
3 ... do 2 L Locatlop accessed
by fun(i)
a[1] 1
al0] /N

13

I Memory Referencing Errors

C and C++ do not provide any memory protection

« Qut of bounds array references
 Invalid pointer values
e Abuses of malloc/free

Can lead to nasty bugs

 Whether or not bug has any effect depends on system and compiler

« Action at a distance
- Corrupted object logically unrelated to one being accessed
- Effect of bug may be first observed long after it is generated

How can I deal with this?

e Program in Java, Ruby or ML
e Understand what possible interactions may occur

« Use or develop tools to detect referencing errors
(e.g. Valgrind)

14

I Memory System Performance Example

void copyij(int src[2048][2048],
int dst[2048][2048])
{
int i,j;
for (1 = 0; 1 < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][il;

void copyji(int
int
{

int 1,3;

for (j = 0; j
><z for (1 = 0;

dst[1][j]
}

src[2048][2048],
dst[2048][2048])

< 2048; j++)
i< 2048; i++)
= src[i][j];

Need to understand hierarchical memory organization

Performance depends on access patterns

e Including how step through multi-dimensional array

15

I The Memory Mountain

Intel Core i7

7000 2.67 GHz
| coye 32 KB L1 d-cache
256 KB L2 cache
6000 - 8 MB L3 cache
0
o 5000 -
3
5
2 4000
(=]
=
o
< 3000
©
S
14 2000

Stride (x8 bytes)

8M

Size (bytes)

Te}
~—
(72}

s32
64M

16

Great Reality #4:
There's more to performance than asymptotic complexity

Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

« Easily see 10:1 performance range depending on how code written

Must understand system to optimize performance

 How programs compiled and executed
 How to measure program performance and identify bottlenecks

« How to improve performance without destroying code modularity and
generality

17

I Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

50000

37500

Best code (K. Goto)

Gflop/s

25000

12500

Triple loop

0 2,250 4,500 6,750 9.000

matrx size

Standard desktop computer, vendor compiler, using optimization
flags

« Both implementations have exactly the same operations count (2n3)

What 1s going on?
18

} MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

50000

—O—
-8
37500
(%]
=
3 Multiple threads: 4x
& 25000
12500
i Vector instructions: 4x
0 2 - Memory hierarchy and other optimizations: 20x
0 2,250 4,500 6,750 9,000

matrix size

Reason for 20x:

« Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

Effect: fewer register spills, L1/L2 cache misses, and TLB misses
19

Great Reality #5:
Computers do more than execute programs

They need to get data in and out

« I/0 system critical to program reliability and performance

They communicate with each other over networks

e« Many system-level issues arise in presence of network

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

20

	슬라이드 1: Introduction
	슬라이드 2: Course Theme: Abstraction Is Good But Don't Forget Reality
	슬라이드 3: Great Reality #1: Ints are not Integers, Floats are not Reals
	슬라이드 4: Code Security Example
	슬라이드 5: Typical Usage
	슬라이드 6: Malicious Usage
	슬라이드 7: Computer Arithmetic
	슬라이드 8: Great Reality #2: You Need to Know Assembly
	슬라이드 9: Assembly Code Example
	슬라이드 10: Code to Read Counter
	슬라이드 11: Great Reality #3: Memory Matters Random Access Memory Is an Unphysical Abstraction
	슬라이드 12: Memory Referencing Bug Example
	슬라이드 13: Memory Referencing Bug Example
	슬라이드 14: Memory Referencing Errors
	슬라이드 15: Memory System Performance Example
	슬라이드 16: The Memory Mountain
	슬라이드 17: Great Reality #4: There's more to performance than asymptotic complexity
	슬라이드 18: Example Matrix Multiplication
	슬라이드 19: MMM Plot: Analysis
	슬라이드 20: Great Reality #5: Computers do more than execute programs

