OPERATING SYSTEM REVIEW
(PROCESS)

Jo, Heeseung

I Operating system?

Computer systems internals

Software @ @ ‘ Application

Operating Systems

Architecture

I/O Devices
Hardware CPU Mem [H][N H]

PROCESSES

Jo, Heeseung

I What Is The Process?

Program?
VS.
Process?
VS.
Processor?
VS.

Task? Job?

I Process Concept (1)

What is the process?

« An instance of a program in execution

An encapsulation of the flow of control in a program

A dynamic and active entity

The basic unit of execution and scheduling

A process is named using its process ID (PID)

A process includes:
- CPU contexts (registers)
- 0S resources (memory, open files, etc.)
- Other information (PID, state, owner, etc.)

I Process Concept (2)

Process in memory

OxFFFFFFfe : memory
kernel virtual memory invisible to
J (code, data, heap, stack) T e
user stack
) (created at runtime)
stack pointer—» 1
brk —» 1 data
run-time heap
(managed by malloc) code
read/write segment \\\\-____________——////
(.data, .bss) program
read-only segment
(.init, .text, .rodata)
0 unused

I Process Creation (1)

Process hierarchy
$ cat filel | wc

« One process can create another
process: parent-child relationship

« UNIX calls the hierarchy
a 'process group"

 Windows has no concept of
process hierarchy

 Browsing a list of processes:
- ps in UNIX
- taskmgr (Task Manager) in Windows

I Process Creation (2)

Process creation events

« Calling a system call

- fork() in POSIX, CreateProcess() in Win32

- Shells or GUIs use this system call internally
e System initialization

- Init process

- PID 1 process

I Process Creation (3)

Resource sharing
$ cat filel | wc

« Parent may inherit all or a part of
resources and privileges for its children

- UNIX: User ID, open files, etc.

Execution

« Parent may either wait for it to finish,
or 1t may continue in parallel

Address space

e« Child duplicates the parent's address space or has a program loaded
into it

10

I Process Termination

Process termination events

Normal exit (voluntary)
Error exit (voluntary)
Fatal error (involuntary)

- Exceed allocated resources

- Segmentation fault

- Protection fault, etc.

Killed by another process
(involuntary)

- By receiving a signal

#include <stdio.h>

int main()

{
int 1, fd;
char buf[100];

fd=open("a.txt", "r");
if (fd==NULL)

return -1;
read(fd, buf, 1000);

return 0;

11

} fork()

fork() system call

Creating a child process

Copy the whole virtual address space of parent to create a child
process

Copy internal data structures to manage a child process

Parent get the pid of a child
Child get @ value

12

} fork()

#include <sys/types.h>
#include <unistd.h>

int main()
{
int pid;
pid = fork();
if (pid == 0)
/* child */

else
/* parent x/

#include <sys/types.h>
#include <unistd.h>

int main()
{
int pid;
pid = fork();
if (pid == 0)
/* child */

printf ("Child of %d is %d\n",
getppid(), getpid());
else
/* parent */
printf ("I am %d. My child is %d\n",
getpid(), pid);

printf ("Child of %d is %d\n",
getppid(), getpid());

printf ("I am %d. My child is %d\n",
getpid(), pid);

I fork(): Example Output

% ./a.out

Child of 30000 is 30001.

% ./a.out
Child of 30002 is 30003.

I am 30000. My child is 30001.

#include <sys/types.h>
#include <unistd.h>

int main()

{
int pid;

pid = fork();
if (pid == 0)
/* child */
printf ("Child of %d is %d\n",
getppid(), getpid());
else
/* parent */

printf ("I am %d. My child is %d\n",

getpid(), pid);

I am 30002. My child is 30003.

14

fork() and Virtual Address

Space

#include <sys/types.h>
#include <unistd.h>

int main()
{
int pid;
pid = fork();
if (pid == 0)
/* child */

printf ("Child of %d is %d\n",
getppid(), getpid());
else
/* parent */
printf ("I am %d. My child is %d\n",
getpid(), pid);

}
OXfFFFFiff . memory
kernel virtual memory invisible to
l (code, data, heap, stack) TS ERT
user stack

(created at runtime)

|

stack pointer—

brk — T

run—time heap
(managed by mal loc)

read/wr i te segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0 unused

#include <sys/types.h>
#include <unistd.h>

int main()
{
int pid;
pid = fork();
if (pid == 0)
/* child */

printf ("Child of %d is %d\n",
getppid(), getpid());
else
/* parent */
printf ("I am %d. My child is %d\n",
getpid(), pid);

}
OXfFAFFEFS) memory
kernel virtual memory invisible to
l (code, data, heap, stack) TSI EICTS
user stack

(created at runtime)

|

stack pointer—»

brk —» T

run—time heap
(managed by mal loc)

read/wr ite segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0 unused

15

d why fork()?

Very useful when the child ...

Is cooperating with the parent

Relies upon the parent's data to accomplish its task
Example: Web server

While (1) {
int sock = accept();
if ((pid = fork()) == 0) {
/* Handle client request */
} else {
/* Close socket */

}

16

I Zombie vs. orphan process

Zombie process (defunct process)
« A process that completed execution (via the exit system call) but
still has an entry in the process table

e This occurs for the child processes, where the entry is still
needed to allow the parent process to read its child's exit status

I
int lnain() { ijunseog-ui-MacBook-Pro:: ($./a.out &
[1] s&@l152
) e ¥ 2 PID : 60152, pid : 60153
pid_t childPid; A4 Al PID : 66153
1junseog-ul-MacBook-Pro:: el AN E2

. . ps aux | grep 'Z'
childPid = fork(); USER PID HCPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
- 68153 8.8 9.8 8 a seee (Z2) 7:16PM ©:88.88 (a.out)

if (childPid > @) { // parent process
printf("parent PID : %ld, pid : %d\n",(long)getpid(), childPid);
sleep(30);
printf("parent exit\n");
exit(0);

}

else if (childPid == 0){ // A4 T E
printf("child PID : %ld\n", (long)getpid());

sleep(1);
printf("child exit\n");
exit(0);

}

return 0;

17

I Zom

bie vs. orphan process

Orphan process

A process whose parent process has finished or terminated, though

it remains running itself

Any orphaned process will be immediately adopted by the special

L] L]
lnlt System process ijunseag-ui-MacBook-Pro:: = $./a.out
28 PID : 46797, pid : 46798
TAOAE
3 3 At A PID : 46798 R 2 PID : 46797
1nt maln() { At Al PID : 46798 B 2 PID : 46797
It A PID : 46798 B 2 PID : 46797
q q q 282 ZE
pld_t childPid; ijunseog-ui-MacBook-Pro:s <3 A A PID :
. . A4 PID : 46798 £ 2 PID : |1
int 1; XA PID : 46798 B2 PID : |1
At A PID : 46798 2 2 PID : |1
A4 PID : 46798 £ 2 PID : |1
childPid = fork(); XM OPID : 46798 £ 2 PID : |1
It A PID : 46798 B 2 PID : |1
x4 EE

if (childPid > @) { // parent process
printf("parent PID : %ld, pid : %d\n",(long)getpid(), childPid);
sleep(2);
printf("parent exit\n");
exit(0);
}
else if (childPid == @){ // child process
for(i=0;i<10;i++) {
printf("child PID : %1d parent PID : %1d\n", (long)getpid(), (long)getppid());
sleep(1);
}
printf("child exit\n");
exit(0);

46798 B 2

PID :

1

18

I Process State Transition (1)

admitted interrupt

/O or event completion scheduler dispatch

I/O or event wait

19

THREADS

Jo, Heeseung

I Rethinking Processes

What's similar in these cooperating processes?

« They all use (share?) the same code and data (address space)
« They all use the same privilege
« They all use the same resources (files, sockets, etc.)

What's different?

« Each has its own hardware execution state:
PC, registers, SP, and stack

21

I Key Idea (1)

Separate the concept of a process from its execution state

 Process: address space, resources, other general process attributes
- e.g., privileges
 Execution state: PC, SP, registers, etc.

« This execution state is usually called
- Thread
- Lightweight process (LWP)
- Thread of control

22

I Key Idea (2)

User
space

Kernel
space

Process 1 Process 1 Process 1

\ | |

Process

\

Thread

|

Thread

Kernel

Kernel

(a)

(b)

Per process items
Address space

Global variables

Open files

Child processes

Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

I Key Idea (3)

Each thread has its own stack

Thread 2

Thread 1
\

|

Thread 3

Thread 1's
stack

_—~ Process

Thread 3's stack

Kernel

24

I Key Idea (4)

Each thread has its own stack

code data files
registers stack
thread —»

single-threaded process

code data files
registers ||| registers ||| registers
stack stack stack
{_

— thread

multithreaded process

25

I What 1s a Thread?

A thread of control (or a thread)

A sequence of instructions being executed in a program
e Usually consists of

- A program counter (PC), general registers

- A stack to keep track of local variables and return addresses
 Threads share the process instructions and most of its data

- A change in shared data by one thread can be seen by the other threads
in the process

* Threads also share most of the 0S state of a process

26

I Concurrent Servers: Threads

Using threads

We can create a new thread for each request

(2) create new
(1) request thread to service

the request

2

client > Server

{

}
{

webserver ()

(3) resume listening
for additional

while (1) { client requests

}

int sock = accept();
create_thread (handle_request, sock);

handle_request (int sock)

/* Process request */
close (sock);

thread

27

I Multithreading

Benefits

Creating concurrency is cheap
- Time and memory consumption
Improves program structure
Higher throughput
- By overlapping computation with I/0 operations
Better responsiveness (User interface / Server)
- Can handle concurrent events (e.g., web servers)
Better resource sharing
Utilization of multiprocessor architectures
- Allows building parallel programs

28

I Address Space with Threads

OXFFFFFFFF

address space

0x00000000

thread 1 stack
I < SP (T1)
thread 2 stack
¢ «— SP (TZ)
thread 3 stack
I <— SP (T3)
T
heap
(dynamically allocated mem)
static data
(data segment)
+«— PC (T2)
code «—— pC (T1)
(text segment) «— PC (T3)

29

I pthreads (1)

Thread creation/termination

int pthread create (pthread t =tid,
pthread attr_t =xattr,
void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval);

int pthread_join (pthread_t tid,
void *xxthread_return);

30

The Pthreads "hello,

WOor

1d" Program

#include <stdio.h>
#include <pthread.h>

void *threadfunc(void *vargp);

/* thread routine */

void *threadfunc(void *vargp) {
sleep(1);
printf("Hello, world!\n");
return NULL;

}

int main() {
pthread t tid;

gcc ex.c -lpthread
./a.out

main

Hello, world!

main?2

pthread create(&tid, NULL, threadfunc, NULL);

printf("main\n");
pthread join(tid, NULL);
printf("main2\n");
sleep(2);

return 0;

I Threading Issues (1)

fork() and exec() can be issue

When a thread calls fork()
« Does the new process duplicate all the threads?
« Is the new process single-threaded?

Some UNIX systems support two versions of fork()

 In pthreads,
- fork() duplicates only a calling thread

« In the Unix international standard,
- fork() duplicates all parent threads in the child
- fork1l() duplicates only a calling thread

Normally, exec() replaces the entire process
If a thread call exit()?

If the main thread dies(return, exit()) before child threads?

	슬라이드 1: Operating System Review (Process)
	슬라이드 3: Operating system?
	슬라이드 4: Processes
	슬라이드 5: What Is The Process?
	슬라이드 6: Process Concept (1)
	슬라이드 7: Process Concept (2)
	슬라이드 8: Process Creation (1)
	슬라이드 9: Process Creation (2)
	슬라이드 10: Process Creation (3)
	슬라이드 11: Process Termination
	슬라이드 12: fork()
	슬라이드 13: fork()
	슬라이드 14: fork(): Example Output
	슬라이드 15: fork() and Virtual Address Space
	슬라이드 16: Why fork()?
	슬라이드 17: Zombie vs. orphan process
	슬라이드 18: Zombie vs. orphan process
	슬라이드 19: Process State Transition (1)
	슬라이드 20: Threads
	슬라이드 21: Rethinking Processes
	슬라이드 22: Key Idea (1)
	슬라이드 23: Key Idea (2)
	슬라이드 24: Key Idea (3)
	슬라이드 25: Key Idea (4)
	슬라이드 26: What is a Thread?
	슬라이드 27: Concurrent Servers: Threads
	슬라이드 28: Multithreading
	슬라이드 29: Address Space with Threads
	슬라이드 30: pthreads (1)
	슬라이드 31: The Pthreads "hello, world" Program
	슬라이드 34: Threading Issues (1)

