
File Systems

Jo, Heeseung

2

Today's Topics

File system basics

Directory structure

File system mounting

3

Basic Concepts

Requirements for long-term information storage

• Store a very large amount of information

• Survive the termination of the process using it

• Access the information concurrently by multiple processes

File

• A named collection of related information that is recorded on
secondary storage

- Persistent through power failures and system reboots

• OS provides a uniform logical view of information storage via files

File system

• Implement an abstraction for secondary storage (files)

• Organizes files logically (directories)

• Permit sharing of data between processes, people, and machines

• Protect data from unwanted access (security)

4

Storage: A Logical View

Abstraction given by block device drivers:

Operations

• Identify(): returns N

• Read(start sector #, # of sectors)

• Write(start sector #, # of sectors)

512B 512B 512B

0 1 N-1

Source: Sang Lyul Min (Seoul National Univ.)

5

File System Basics (1)

For each file, we have

• File name

• File attributes (metadata)

- File size

- Owner, access control lists

- Creation time, last access time, last modification time, …

• File contents (data)

- File systems normally do not care what they are

File access begins with ...

• File name

- open ("/etc/passwd", O_RDONLY);

6

File System Basics (2)

File system: A mapping problem

• <filename, metadata, data> <a set of blocks>

meta1 meta2

"a.out" "dog.jpg"

1

2

3

4

1

2

3

1 323 1 2

"a
.
ou
t
"

"d
o
g.
jp
g"

4

me
ta
1

me
ta
2

http://kr.srd.yahoo.com/S=12966056/K=%B0%B3%C1%D7%C0%CC/l=SI0/R=1/TR=862/*-http:/kr.dcinside3.imagesearch.yahoo.com/zb40/view.php?id=43&no=25806
http://images.google.com/imgres?imgurl=http://www.scholarships.ed.ac.uk/images/science7.jpg&imgrefurl=http://www.scholarships.ed.ac.uk/postgraduate/colleges/scieng_uk.htm&h=398&w=600&sz=38&tbnid=bZS8YGTX73JZUM:&tbnh=88&tbnw=133&hl=ko&start=2&prev=/images?q=binary+code&svnum=10&hl=ko&lr=&rls=GGLG,GGLG:2006-02,GGLG:ko

7

File System Basics (3)

Goals

• Performance + Reliability

Design issues

• What information should be kept in metadata?

• How to locate metadata?

- Mapping from pathname to metadata

• How to locate data blocks?

• How to manage metadata and data blocks?

- Allocation, reclamation, free space management, etc.

• How to recover the file system after a crash?

• ...

8

File Attributes

Attributes or metadata

Protection

Control
flags

For files whose
records can be

looked up
using a key

Other
information

9

File Operations

Unix operations

int creat(const char *pathname, mode_t mode);

int open(const char *pathname, int flags, mode_t mode);

int close(int fd);

ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

off_t lseek(int fd, off_t offset, int whence);

int stat(const char *pathname, struct stat *buf);

int chmod(const char *pathname, mode_t mode);

int chown(const char *pathname, uid_t owner, gid_t grp);

int flock(int fd, int operation);

int fcntl(int fd, int cmd, long arg);

10

Directories

Directories

• For users, provide a structured way to organize files

• For the file system, provide a convenient naming interface

- Allows the implementation to separate logical file organization from
physical file placement on the disk

A hierarchical directory system

• Most file systems support multi-level directories

• Most file systems support the notion of a current directory (or
working directory)

• Relative names (path) specified with respect to current directory

- e.g. cd ../../../foo/bar/../bar

• Absolute names (path) start from the root of directory tree

- e.g. cd /tmp/foo/bar

11

Directory Internals

A directory is …

• Typically just a file that contains special metadata

• Directory = list of (file name, file attributes)

• Attributes include such things as:

- Size, protection, creation time, access time,

- Location on disk, etc.

• Usually unordered (effectively random)

- Entries usually sorted by program that reads directory

x
c j

a

b

d

k

12

Pathname Translation

open("/a/b/c", …)

• Open directory "/"
(well known, can always find)

• Search the directory for "a",
get location of "a"

• Open directory "a", search for "b", get location of "b"

• Open directory "b", search for "c", get location of "c"

• Open file "c"

• Of course, permissions are checked at each step

System spends a lot of time walking down directory path

• This is why open() is separate from read()/write()

- read("/a/b/c", buf, 100); ??

• OS will cache prefix lookups to enhance performance

- /a/b, /a/bb, /a/bbb, etc.

- All share the "/a" prefix

/
x

a
b

c

y

z

h

k

13

Directory Operations

Unix operations

• Directories implemented in files

- Use file operations to manipulate directories

• C runtime libraries provides a higher-level abstraction for reading
directories

- DIR *opendir(const char *name);

- struct dirent *readdir(DIR *dir);

- void seekdir(DIR *dir, off_t offset);

- int closedir(DIR *dir);

• Other directory-related system calls

- int rename(const char *oldpath, const char *newpath);

- int link(const char *oldpath, const char *newpath);

- int unlink(const char *pathname);

14

File System Mounting

Mounting

• A file system must be mounted
before it can be available to
processes on the system

- Windows: to drive letters
(e.g., C:\, D:\, …)

- Unix: to an existing empty
directory
(= mount point)

15

Disk Layout

Master Boot Record

Partition 1
(active)

Partition 2

Partition 3

boot code
partition

table

boot block

super block

bitmaps

i-nodes

root dirFS-
dependent

: fs metadata
(type, # blocks, ...)

: data structures for
free space mgmt.

: file metadata

files
&

directories

16

In-memory Structures

count
offset

file attributes

process A

process B

per-process
file descriptor table

(per-process open-file table)

file table
(system-wide

open-file table)

in-memory
partition table

directory cache

buffer cache

17

File System Internals

Virtual File System (VFS)

minix nfs ext4 fat … mmfs procfs

buffer cache
File System

device driver

System call interface

18

VFS (1)

Virtual File System

• Manages kernel-level file abstractions in one format for all file
systems

• Receives system call requests from user-level

- e.g., open, read, write, close, stat, etc.

• Interacts with a specific file system based on mount point
traversal

Virtual File System (VFS)

minix nfs ext4 fat … mmfs procfs

buffer cache
File System

device driver

System call interface

19

VFS (2)

Linux: VFS common file model

• The superblock object

- stores information concerning
a mounted file system

• The dentry object

- stores information about
the linking of a directory entry
with the corresponding file

• The inode object

- stores general information about a specific file

• The file object

- stores information about the interaction between an open file and a
process

Master Boot Record

Partition 1
(active)

Partition 2

Partition 3

boot block

super block

bitmaps

i-nodes

root dirFS-
dependent

files
&

directories

