File Systems

Jo, Heeseung



I Today's Topics

File system basics
Directory structure

File system mounting



I Basic Concepts

Requirements for long-term information storage
« Store a very large amount of information
e Survive the termination of the process using it

e Access the information concurrently by multiple processes

« A named collection of related information that is recorded on
secondary storage

- Persistent through power failures and system reboots
e 0S provides a uniform logical view of information storage via files
File system
« Implement an abstraction for secondary storage (files)
e Organizes files logically (directories)
« Permit sharing of data between processes, people, and machines

 Protect data from unwanted access (security)



I Storage: A Logical View

Abstraction given by block device drivers:

512B | 512B 512B
0 1 N-1
Operations

Identify(): returns N

Read(start sector #, # of sectors)

Write(start sector #, # of sectors)

Source: Sang Lyul Min (Seoul National Univ.) 4



I File System Basics (1)

For each file, we have
« File name
« File attributes (metadata)

- File size

- Owner, access control lists

- Creation time, last access time, last modification time, ..

« File contents (data)
- File systems normally do not care what they are
File access begins with

« File name
- open ("/etc/passwd”, O_RDONLY);



I File System Basics (2)

File system: A mapping problem

o <(filename, metadata, data> <a set

of blocks>

IHIE!

"dog.jpg"

=
meta2



http://kr.srd.yahoo.com/S=12966056/K=%B0%B3%C1%D7%C0%CC/l=SI0/R=1/TR=862/*-http:/kr.dcinside3.imagesearch.yahoo.com/zb40/view.php?id=43&no=25806
http://images.google.com/imgres?imgurl=http://www.scholarships.ed.ac.uk/images/science7.jpg&imgrefurl=http://www.scholarships.ed.ac.uk/postgraduate/colleges/scieng_uk.htm&h=398&w=600&sz=38&tbnid=bZS8YGTX73JZUM:&tbnh=88&tbnw=133&hl=ko&start=2&prev=/images?q=binary+code&svnum=10&hl=ko&lr=&rls=GGLG,GGLG:2006-02,GGLG:ko

I File System Basics (3)

Goals

Performance + Reliability

Design issues

What information should be kept in metadata?
How to locate metadata?
- Mapping from pathname to metadata
How to locate data blocks?
How to manage metadata and data blocks?
- Allocation, reclamation, free space management, etc.

How to recover the file system after a crash?



d File Attributes

Attributes or metadata

Attribute

Meaning

Protection

Who can access the file and in what way

Password

Password needed to access the file

Creator

ID of the person who created the file

Cwner

Current owner

Read-only flag

0 for read/write; 1 for read only

 Hidden flag

0 for normal; 1 for do not display in listings

System flag

0 for normal files; 1 for system file

_Archive flag

0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

' Flandom access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

| Lock flags

0 for unlocked; nonzero for locked

' Flecord length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

| Creation time

Date and time the file was created

=

1 1ime of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

l_MaX|mum size

Number of bytes the file may grow to




I File Operations

Unix operations

int creat(const char *pathname, mode_t mode);

int open(const char *pathname, int flags, mode_t mode);
int close(int fd);

ssize t read(int fd, void *buf, size t count);

ssize_t write(int fd, const void *buf, size_t count);
off_t lseek(int fd, off_t offset, int whence);

int stat(const char *pathname, struct stat *buf);

int chmod(const char *pathname, mode_t mode);

int chown(const char #pathname, uid_t owner, gid_t grp);
int flock(int fd, int operation);

int fcntl(int fd, int cmd, long arg);




I Directories

Directories

For users, provide a structured way to organize files

For the file system, provide a convenient naming interface

- Allows the implementation to separate logical file organization from
physical file placement on the disk

A hierarchical directory system

Most file systems support multi-level directories

Most file systems support the notion of a current directory (or
working directory)

Relative names (path) specified with respect to current directory
- e.g. cd ../../../foo/bar/../bar
Absolute names (path) start from the root of directory tree

- e.g. cd /tmp/foo/bar

10



I Directory Internals

A directory 1is ..

Typically just a file that contains special metadata
Directory = list of (file name, file attributes)
Attributes include such things as:

- Size, protection, creation time, access time,

- Location on disk, etc.
Usually unordered (effectively random)

- Entries usually sorted by program that reads directory

— d

b

K

o
- d

11



I Pathname Translation

open("/a/b/c", ..)

Open directory "/" w | Y
(well known, can always find) /{ o E{ k
Search the directory for "a", a— " C

get location of "a

Open directory "a", search for "b", get location of "b"

Open directory "b", search for "c", get location of "c"

Open file "c

Of course, permissions are checked at each step

System spends a lot of time walking down directory path

This is why open() is separate from read()/write()
- read("/a/b/c", buf, 100); ??

0S will cache prefix lookups to enhance performance
- /a/b, /a/bb, /a/bbb, etc.
- All share the "/a" prefix

12



Directory Operations

Unix operations
e Directories implemented in files
- Use file operations to manipulate directories

« C runtime libraries provides a higher-level abstraction for reading
directories

DIR *opendir(const char *name);

struct dirent *readdir(DIR *dir);
void seekdir(DIR #dir, off_t offset);
int closedir(DIR *dir);

e Other directory-related system calls
- int rename(const char *oldpath, const char *newpath);
- int link(const char *oldpath, const char *newpath);

- int unlink(const char #pathname);

13



I File System Mounting

Mounting

« A file system must be mounted
before it can be available to
processes on the system

- Windows: to drive letters
(e.g., C:\, D:\, .)

- Unix: to an existing empty
directory
(= mount point)

sue

users

jane

14



I Disk Layout

boot code
partition
table

Partition 1
(active)

Partition 2
Partition 3

FS-
dependent

boot block

super block

bitmaps

i-nodes

root dir

files
&
directories

: fs metadata

(type, # blocks, ..

: data structures for

free space mgmt.

: file metadata

-)

15



I In-memory Structures

-

process A

—

N

__/

\

file table
(system-wide

open-file table)

—/—P

count
offset
file attributes

per-process

file descriptor table
(per-process open-file table)

4 )
process B
/]
/|
\ J/

in-memory
partition table

_|

directory cache

|

|

|

buffer cache

|

|

|

16



I File System Internals

© & &

System call interface

Virtual File System (VFS)

winix) [ nfs | [exte ][ fot | == [mnts | forocrs

L wmeese |

device driver |< l l i

17



§ VFS

(1)

Virtual File System

Manages kernel-level file abstractions in one format for all file
systems

Receives system call requests from user-level
- e.g., open, read, write, close, stat, etc.

Interacts with a specific file system based on mount point

traversal

System call interface

Virtual File System (VFS)

(minix| [ nfs | [exta ][ fat | == [mnfs | fprocts|

device driver
l l l

File System j




} Vs (2)

boot block

Linux: VFS common file model

ter Boot Recc
Partition 1
(active)
Partition 2
Partition 3

- stores general information about a specific file

e The file object

e The superblock object

- stores information concerning
a mounted file system

e« The dentry object

- stores information about
the linking of a directory entry
with the corresponding file

e« The inode object

FS-
dependent

super block

bitmaps

i-nodes

root dir

files
&
directories

- stores information about the interaction between an open file and a

process

19



