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Today's Topics

What if the physical memory becomes full?

• Page replacement algorithms

How to manage memory among competing processes?

Advanced virtual memory techniques

• Shared memory

• Copy on write

• Memory-mapped files
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Page Replacement (1)

Page replacement

• When a page fault occurs, the OS loads the faulted page from disk 
into a page frame of memory

• At some point, the process has used all of the page frames it is 
allowed to use (No free frame)

• When this happens, 
the OS must replace 
a page for each page 
faulted in

- It must evict a page 
to free up a page 
frame

• The page replacement 
algorithm determines 
how this is done
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Page Replacement (2)

Evicting the best page

• The goal of the replacement algorithm is to reduce the fault rate
by selecting the best victim page to remove

• The best page to evict is the one never touched again

- As process will never again fault on it

• "Never" is a long time, so picking the page closest to "never" is 
the next best thing

Belady's proof

• Evicting the page that won't be used for the longest period of time 
minimizes the number of page faults
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Belady's Algorithm

Optimal page replacement

• Replace the page that will not be used for the longest time in the 
future

• The lowest fault rate

Problem

• Have to predict the future

• Why is Belady's useful? - Use it as a yardstick!

- Compare other algorithms with the optimal to gauge room for improvement

- If optimal is not much better, then algorithm is pretty good

- Otherwise, algorithm could be better

- Lower bound depends on workload
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FIFO (1)

First-In First-Out

• Obvious and simple to implement

- Maintain a list of pages in order they were paged in

- On replacement, evict the one brought in longest time ago

• Why might this be good?

- Maybe the one brought in the longest ago is not being used

• Why might this be bad?

- Maybe, it's not the case

- We don't have any information either way

• FIFO suffers from "Belady's Anomaly"

- The fault rate might increase when the algorithm is given more memory
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FIFO (2)

Example: Belady's anomaly

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames: 9 faults

• 4 frames: 10 faults
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LRU (1)

Least Recently Used

• LRU uses reference information for better replacement decision

- Idea: past experience gives us a guess of future behavior

- On replacement, evict the page that has not been used for the longest 
time in the past

- LRU looks at the past, Belady's wants to look at future

• Implementation

- Counter implementation: put a timestamp

- Stack implementation: maintain a stack

• We need an approximation (heuristic)
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LRU (2)

Example:

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames: ?? faults

• 4 frames: ?? faults
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LRU (3)

Approximating LRU

• Many LRU approximations use the PTE reference (R) bit

- R bit is set whenever the page is referenced (read or written)

• Counter-based approach

- Keep a counter for each page

- At regular intervals, for every page, do:

· If R = 0, increment the counter (hasn't been used)

· If R = 1, zero the counter (has been used)

· Zero the R bit

- The counter will contain the number of intervals

- The page with the largest counter is the least recently used

- Memory overhead for every page

• Some architectures don't have a reference bit

- Can simulate reference bit using the valid bit to induce faults

V R M Prot Page Frame Number (PFN)

1 1 1 2 20
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Second Chance (1)

Second chance or LRU clock

• FIFO with giving a second chance to a recently referenced page

• Arrange all of physical page frames 
in a big circle (clock)
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Second Chance (2)

Second chance or LRU clock

• A clock hand is used to select 
a good LRU candidate

- Sweep through the pages 
in circular order like a clock

- If the R bit is off, 
it hasn't been used recently and we have a victim

- If the R bit is on, turn it off and go to next page (second chance)

• Arm moves quickly when pages are needed

- Low overhead if we have plenty of memory

- If memory is large, "accuracy" of information degrades
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Not Recently Used (1)

NRU or enhanced second chance

• Use R (reference) and M (modify) bits

- Periodically, (e.g., on each clock interrupt), R is cleared, to 
distinguish pages that have not been referenced recently from those that 
have been

- Considering modification of a page

Class 1
R=0, M=1

Class 3
R=1, M=1

Class 2
R=1, M=0

Class 0
R=0, M=0

Read

Write

interrupt

Read

Write

interrupt

Read
Write

interrupt
Read
Write

interrupt
Paged-in
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Not Recently Used (2)

Algorithm

• Removes a page at random from the lowest numbered nonempty class

• It is better to keep a modified page that has not been referenced 
in at least one clock tick than a clean page

• Used in Macintosh

Advantages

• Easy to understand

• Moderately efficient to implement

• Gives a performance that, while certainly not optimal, may be 
adequate



17

LFU (1)

Counting-based page replacement

• A software counter with each page

• At each clock interrupt, for each page, the R bit is added to the 
counter

- The counters denote how often each page has been referenced

Least frequently used (LFU)

• The page with the smallest count will be replaced

Most frequently used (MFU)

• The page with the largest count will be replaced

• The page with the smallest count was probably just brought in and 
has yet to be used

• A page may be heavily used during the initial phase of a process, 
but then is never used again
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LFU (2)

Aging (counting)

• The counters are shifted right by 1 bit before the R bit is added 
to the leftmost

0             5

At this time, 
which one should be evicted?
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Allocation of Frames

Problem

• In a multiprogramming system, we need a way to allocate 
physical memory to competing processes

- What if a victim page belongs to another process?

- How to determine how much memory to give to each process?

• Fixed space algorithms

- Each process is given a limit of pages it can use

- When it reaches its limit, it replaces from its own pages

- Local replacement: some process may do well, others suffer

• Variable space algorithms

- Processes' set of pages grows and shrinks dynamically

- Global replacement: one process can ruin it for the rest (Linux)
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Allocation of Frames
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Thrashing (1)

Why?
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Thrashing (2)

Thrashing

• Most of the time is spent by an OS paging data back and forth from 
disk (heavy page fault)

- No time is spent doing useful work

- The system is overcommitted

- No idea which pages should be in memory to reduce faults

- Could be that there just isn't enough physical memory for all processes

• Possible solutions

- Write out all pages of a process

- Buy more memory
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Working Set Model (1)

Working set: The set of pages process currently "needs"

• Peter Denning, 1968

• A working set of a process is used to model the dynamic locality of 
its memory usage

Definition

• WS(t, w) = { pages P such that P was referenced in the time
interval (t, t-w) }

- t: time

- w: working set window size (measured in page references)

• A page is in the working set only if it was referenced in the last 
w references
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Working Set Model (2)

Working set size (WSS)

• The number of pages in the working set
= The number of pages referenced in the interval (t, t-w)

• The working set size changes with program locality

- During periods of poor locality, more pages are referenced

- Within that period of time, the working set size is larger

• Intuitively, working set must be in memory to prevent heavy 
faulting (thrashing)

Controlling the degree of multiprogramming based on the working 
set:

• Associate parameter WSS with each process

• If the sum of WSS exceeds the total number of frames, suspend a 
process

• Only allow a process to start if its WSS still fits in memory
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Working Set Model (3)

Working set page replacement

• Maintaining the set of pages touched in the last k references

• Approximate the working set

- Measured using the current virtual time: the amount of CPU time a 
process has actually used

• Find a page that is not in the working set and evict it

- Associate the "Time of last use (Tlast)" field in each PTE

- A periodic clock interrupt clears the R bit

- On every page fault, the page table is scanned to look for a suitable 
page to evict

- If R = 1, timestamp the current virtual time (Tlast = Tcurrent)

- If R = 0 and (Tcurrent - Tlast) > t, evict the page (t: windows size)

- If R = 0 and (Tcurrent - Tlast) < t, do nothing
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Working Set Model (4)

Let's assume t is 600. Then, which page should be evicted?
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PFF (1)

Page Fault Frequency

• Monitor the fault rate for each process

• If the fault rate is above a high threshold(upper bound)

- Give it more memory, so that it faults less 

- But not always valid - FIFO, Belady's anomaly

• If the fault rate is below a low threshold(lower bound)

- Take away memory

• If the PFF increases and no free frames are available

- Select some process and suspend it
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PFF (2)

Give more memory frames

Take away memory frames
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Advanced VM Functionality

Virtual memory tricks

• Shared memory

• Copy on write

• Memory-mapped files
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Shared Memory (1)

Shared memory

• Private virtual address spaces protect applications from each other

• But this makes it difficult to share data

- Parents and children in a forking Web server or proxy will want to share 
an in-memory cache without copying

- Read/Write (access to share data)

- Execute (shared libraries)

• We can use shared memory to allow processes to share data using 
direct memory reference

- Both processes see updates to the shared memory segment

- How are we going to coordinate access to shared data?
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Shared Memory (2)

Example

Process A

#include <sys/shm.h>
key_t key = 123456;
char *shared_memory;

/* shared_memory create */
shmid = shmget(key, SIZE, IPC_CREAT | 0644)

shared_memory = shmat(shmid, NULL, 0)

memset(shared_memory, 0, strlen(shared_memory));   // shared_memory reset
memcpy(shared_memory, "TEST", 5);

Process B

#include <sys/shm.h>
key_t key = 123456;

shmid = shmget(key, SIZE, 0644)
shm = shmat(shmid, NULL, 0)
printf("%s\n",shm);
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Shared Memory (3)

Implementation

• How can we implement 
shared memory using page tables?

- Have PTEs in both tables map 
to the same physical frame

- Each PTE can have different 
protection values

- Must update both PTEs 
when page becomes invalid

• Can map shared memory at same 
or different virtual addresses 
in each process' address space?

- Different: Flexible (no address space conflicts), but pointers inside 
the shared memory segment are invalid

- Same: Less flexible, but shared pointers are valid

Process

Page
table

Physical
memory

child process
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Copy On Write (1)

Process creation

• Requires copying the entire address space of the parent process to 
the child process

• Very slow and inefficient!

Solution 1: Use threads

• Sharing address space is free

Solution 2: Use vfork() system call

• vfork() creates a process that shares the memory address space of 
its parent

• To prevent the parent from overwriting data needed by the child, 
the parent's execution is blocked until the child exits or executes 
a new program

• Any change by the child is visible to the parent once it resumes
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Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of 
parent pages in child address 
space

• Shared pages are protected as 
read-only in child

- Reads happen as usual

- Writes generate a protection 
fault, trap to OS

- OS copies the page and changes 
page mapping in client page 
table

- Restarts write instruction

Process

Page
table

Physical
memory



36

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of 
parent pages in child address 
space

• Shared pages are protected as 
read-only in child

- Reads happen as usual

- Writes generate a protection 
fault, trap to OS

- OS copies the page and changes 
page mapping in client page 
table

- Restarts write instruction

Process

Page
table

Physical
memory

fork

child process
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Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of 
parent pages in child address 
space

• Shared pages are protected as 
read-only in child

- Reads happen as usual

- Writes generate a protection 
fault, trap to OS

- OS copies the page and changes 
page mapping in client page 
table

- Restarts write instruction

Process

Page
table

Physical
memory

COW

fork

COW

child process
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Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of 
parent pages in child address 
space

• Shared pages are protected as 
read-only in child

- Reads happen as usual

- Writes generate a protection 
fault, trap to OS

- OS copies the page and changes 
page mapping in client page 
table

- Restarts write instruction

Process

Page
table

Physical
memory

COW

fork

COW
write

child process
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Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of 
parent pages in child address 
space

• Shared pages are protected as 
read-only in child

- Reads happen as usual

- Writes generate a protection 
fault, trap to OS

- OS copies the page and changes 
page mapping in client page 
table

- Restarts write instruction

Process

Page
table

Physical
memory

fork

write

copied

child process
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Memory-Mapped Files (1)

Memory-mapped files

• Mapped files enable processes 
to do file I/O using memory 
references

- Instead of open(), read(), 
write(), close()

• mmap(): bind a file to a virtual 
memory region

- PTEs map virtual addresses to 
physical frames holding file data

- <Virtual address base + N> = <offset N in file>

• Initially, all pages in mapped region 
marked as invalid

- Whenever invalid page is accessed, OS reads a page from file

- When evicted from physical memory, OS writes a page to file

- If page is not dirty, no write needed

Process

Page
table

Physical
memory

File
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Memory-Mapped Files (2)

Example

if ((fd = open("test.txt", O_RDWR)) == -1) {
perror("open");
exit(1);

}

addr = mmap(NULL, statbuf.st_size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, (off_t)0);
if (addr == MAP_FAILED) {

perror("mmap");
exit(1);

}
close(fd);

printf("%s", addr);
strcpy(addr, buf);
sprintf(addr, "%s to modify some text ", buf);
...
...
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Memory-Mapped Files (3)

Advantages

• Uniform access for files and memory (just use pointers)

• Less copying

• Several processes can map the same file allowing the pages in 
memory to be shared

Drawbacks

• Process has less control over data movement

• Does not generalize to streamed I/O (pipes, sockets, etc.)

Note:

• File is essentially backing store for that region of the virtual 
address space (instead of using the swap file)

• Virtual address space not backed by "real" files also called 
"anonymous VM(page)"
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Summary (1)

VM mechanisms

• Physical and virtual addressing

• Partitioning, Paging, Segmentation

• Page table management, TLBs, etc.

VM policies

• Page replacement algorithms

• Memory allocation policies

VM requires hardware and OS support

• MMU (Memory Management Unit)

• TLB (Translation Lookaside Buffer)

• Page tables, etc.
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Summary (2)

VM optimizations

• Demand paging (space)

• Managing page tables (space)

• Efficient translation using TLBs (time)

• Page replacement policy (time)

Advanced functionality

• Sharing memory

• Copy on write

• Mapped files


