
Virtual Memory III

Jo, Heeseung

2

Today's Topics

What if the physical memory becomes full?

• Page replacement algorithms

How to manage memory among competing processes?

Advanced virtual memory techniques

• Shared memory

• Copy on write

• Memory-mapped files

4

Page Replacement (1)

Page replacement

• When a page fault occurs, the OS loads the faulted page from disk
into a page frame of memory

• At some point, the process has used all of the page frames it is
allowed to use (No free frame)

• When this happens,
the OS must replace
a page for each page
faulted in

- It must evict a page
to free up a page
frame

• The page replacement
algorithm determines
how this is done

5

Page Replacement (2)

Evicting the best page

• The goal of the replacement algorithm is to reduce the fault rate
by selecting the best victim page to remove

• The best page to evict is the one never touched again

- As process will never again fault on it

• "Never" is a long time, so picking the page closest to "never" is
the next best thing

Belady's proof

• Evicting the page that won't be used for the longest period of time
minimizes the number of page faults

6

Belady's Algorithm

Optimal page replacement

• Replace the page that will not be used for the longest time in the
future

• The lowest fault rate

Problem

• Have to predict the future

• Why is Belady's useful? - Use it as a yardstick!

- Compare other algorithms with the optimal to gauge room for improvement

- If optimal is not much better, then algorithm is pretty good

- Otherwise, algorithm could be better

- Lower bound depends on workload

7

FIFO (1)

First-In First-Out

• Obvious and simple to implement

- Maintain a list of pages in order they were paged in

- On replacement, evict the one brought in longest time ago

• Why might this be good?

- Maybe the one brought in the longest ago is not being used

• Why might this be bad?

- Maybe, it's not the case

- We don't have any information either way

• FIFO suffers from "Belady's Anomaly"

- The fault rate might increase when the algorithm is given more memory

8

FIFO (2)

Example: Belady's anomaly

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames: 9 faults

• 4 frames: 10 faults

1

2

3

5

3

4

1

2

3

4

2

3

4

5

old

new

old

new

9

LRU (1)

Least Recently Used

• LRU uses reference information for better replacement decision

- Idea: past experience gives us a guess of future behavior

- On replacement, evict the page that has not been used for the longest
time in the past

- LRU looks at the past, Belady's wants to look at future

• Implementation

- Counter implementation: put a timestamp

- Stack implementation: maintain a stack

• We need an approximation (heuristic)

10

LRU (2)

Example:

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames: ?? faults

• 4 frames: ?? faults

1

2

3

3

4

5

1

2

3

4

2

3

4

5

oldest

latest

oldest

latest

12

LRU (3)

Approximating LRU

• Many LRU approximations use the PTE reference (R) bit

- R bit is set whenever the page is referenced (read or written)

• Counter-based approach

- Keep a counter for each page

- At regular intervals, for every page, do:

· If R = 0, increment the counter (hasn't been used)

· If R = 1, zero the counter (has been used)

· Zero the R bit

- The counter will contain the number of intervals

- The page with the largest counter is the least recently used

- Memory overhead for every page

• Some architectures don't have a reference bit

- Can simulate reference bit using the valid bit to induce faults

V R M Prot Page Frame Number (PFN)

1 1 1 2 20

13

Second Chance (1)

Second chance or LRU clock

• FIFO with giving a second chance to a recently referenced page

• Arrange all of physical page frames
in a big circle (clock)

14

Second Chance (2)

Second chance or LRU clock

• A clock hand is used to select
a good LRU candidate

- Sweep through the pages
in circular order like a clock

- If the R bit is off,
it hasn't been used recently and we have a victim

- If the R bit is on, turn it off and go to next page (second chance)

• Arm moves quickly when pages are needed

- Low overhead if we have plenty of memory

- If memory is large, "accuracy" of information degrades

15

Not Recently Used (1)

NRU or enhanced second chance

• Use R (reference) and M (modify) bits

- Periodically, (e.g., on each clock interrupt), R is cleared, to
distinguish pages that have not been referenced recently from those that
have been

- Considering modification of a page

Class 1
R=0, M=1

Class 3
R=1, M=1

Class 2
R=1, M=0

Class 0
R=0, M=0

Read

Write

interrupt

Read

Write

interrupt

Read
Write

interrupt
Read
Write

interrupt
Paged-in

16

Not Recently Used (2)

Algorithm

• Removes a page at random from the lowest numbered nonempty class

• It is better to keep a modified page that has not been referenced
in at least one clock tick than a clean page

• Used in Macintosh

Advantages

• Easy to understand

• Moderately efficient to implement

• Gives a performance that, while certainly not optimal, may be
adequate

17

LFU (1)

Counting-based page replacement

• A software counter with each page

• At each clock interrupt, for each page, the R bit is added to the
counter

- The counters denote how often each page has been referenced

Least frequently used (LFU)

• The page with the smallest count will be replaced

Most frequently used (MFU)

• The page with the largest count will be replaced

• The page with the smallest count was probably just brought in and
has yet to be used

• A page may be heavily used during the initial phase of a process,
but then is never used again

18

LFU (2)

Aging (counting)

• The counters are shifted right by 1 bit before the R bit is added
to the leftmost

0 5

At this time,
which one should be evicted?

19

Allocation of Frames

Problem

• In a multiprogramming system, we need a way to allocate
physical memory to competing processes

- What if a victim page belongs to another process?

- How to determine how much memory to give to each process?

• Fixed space algorithms

- Each process is given a limit of pages it can use

- When it reaches its limit, it replaces from its own pages

- Local replacement: some process may do well, others suffer

• Variable space algorithms

- Processes' set of pages grows and shrinks dynamically

- Global replacement: one process can ruin it for the rest (Linux)

20

Allocation of Frames

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5Process
B

Process
A

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0 Page
table A

Page
table B

User space Kernel space

21

Thrashing (1)

Why?

22

Thrashing (2)

Thrashing

• Most of the time is spent by an OS paging data back and forth from
disk (heavy page fault)

- No time is spent doing useful work

- The system is overcommitted

- No idea which pages should be in memory to reduce faults

- Could be that there just isn't enough physical memory for all processes

• Possible solutions

- Write out all pages of a process

- Buy more memory

23

Working Set Model (1)

Working set: The set of pages process currently "needs"

• Peter Denning, 1968

• A working set of a process is used to model the dynamic locality of
its memory usage

Definition

• WS(t, w) = { pages P such that P was referenced in the time
interval (t, t-w) }

- t: time

- w: working set window size (measured in page references)

• A page is in the working set only if it was referenced in the last
w references

24

Working Set Model (2)

Working set size (WSS)

• The number of pages in the working set
= The number of pages referenced in the interval (t, t-w)

• The working set size changes with program locality

- During periods of poor locality, more pages are referenced

- Within that period of time, the working set size is larger

• Intuitively, working set must be in memory to prevent heavy
faulting (thrashing)

Controlling the degree of multiprogramming based on the working
set:

• Associate parameter WSS with each process

• If the sum of WSS exceeds the total number of frames, suspend a
process

• Only allow a process to start if its WSS still fits in memory

25

Working Set Model (3)

Working set page replacement

• Maintaining the set of pages touched in the last k references

• Approximate the working set

- Measured using the current virtual time: the amount of CPU time a
process has actually used

• Find a page that is not in the working set and evict it

- Associate the "Time of last use (Tlast)" field in each PTE

- A periodic clock interrupt clears the R bit

- On every page fault, the page table is scanned to look for a suitable
page to evict

- If R = 1, timestamp the current virtual time (Tlast = Tcurrent)

- If R = 0 and (Tcurrent - Tlast) > t, evict the page (t: windows size)

- If R = 0 and (Tcurrent - Tlast) < t, do nothing

26

Working Set Model (4)

Let's assume t is 600. Then, which page should be evicted?

27

PFF (1)

Page Fault Frequency

• Monitor the fault rate for each process

• If the fault rate is above a high threshold(upper bound)

- Give it more memory, so that it faults less

- But not always valid - FIFO, Belady's anomaly

• If the fault rate is below a low threshold(lower bound)

- Take away memory

• If the PFF increases and no free frames are available

- Select some process and suspend it

28

PFF (2)

Give more memory frames

Take away memory frames

29

Advanced VM Functionality

Virtual memory tricks

• Shared memory

• Copy on write

• Memory-mapped files

30

Shared Memory (1)

Shared memory

• Private virtual address spaces protect applications from each other

• But this makes it difficult to share data

- Parents and children in a forking Web server or proxy will want to share
an in-memory cache without copying

- Read/Write (access to share data)

- Execute (shared libraries)

• We can use shared memory to allow processes to share data using
direct memory reference

- Both processes see updates to the shared memory segment

- How are we going to coordinate access to shared data?

31

Shared Memory (2)

Example

Process A

#include <sys/shm.h>
key_t key = 123456;
char *shared_memory;

/* shared_memory create */
shmid = shmget(key, SIZE, IPC_CREAT | 0644)

shared_memory = shmat(shmid, NULL, 0)

memset(shared_memory, 0, strlen(shared_memory)); // shared_memory reset
memcpy(shared_memory, "TEST", 5);

Process B

#include <sys/shm.h>
key_t key = 123456;

shmid = shmget(key, SIZE, 0644)
shm = shmat(shmid, NULL, 0)
printf("%s\n",shm);

32

Shared Memory (3)

Implementation

• How can we implement
shared memory using page tables?

- Have PTEs in both tables map
to the same physical frame

- Each PTE can have different
protection values

- Must update both PTEs
when page becomes invalid

• Can map shared memory at same
or different virtual addresses
in each process' address space?

- Different: Flexible (no address space conflicts), but pointers inside
the shared memory segment are invalid

- Same: Less flexible, but shared pointers are valid

Process

Page
table

Physical
memory

child process

33

Copy On Write (1)

Process creation

• Requires copying the entire address space of the parent process to
the child process

• Very slow and inefficient!

Solution 1: Use threads

• Sharing address space is free

Solution 2: Use vfork() system call

• vfork() creates a process that shares the memory address space of
its parent

• To prevent the parent from overwriting data needed by the child,
the parent's execution is blocked until the child exits or executes
a new program

• Any change by the child is visible to the parent once it resumes

35

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of
parent pages in child address
space

• Shared pages are protected as
read-only in child

- Reads happen as usual

- Writes generate a protection
fault, trap to OS

- OS copies the page and changes
page mapping in client page
table

- Restarts write instruction

Process

Page
table

Physical
memory

36

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of
parent pages in child address
space

• Shared pages are protected as
read-only in child

- Reads happen as usual

- Writes generate a protection
fault, trap to OS

- OS copies the page and changes
page mapping in client page
table

- Restarts write instruction

Process

Page
table

Physical
memory

fork

child process

37

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of
parent pages in child address
space

• Shared pages are protected as
read-only in child

- Reads happen as usual

- Writes generate a protection
fault, trap to OS

- OS copies the page and changes
page mapping in client page
table

- Restarts write instruction

Process

Page
table

Physical
memory

COW

fork

COW

child process

38

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of
parent pages in child address
space

• Shared pages are protected as
read-only in child

- Reads happen as usual

- Writes generate a protection
fault, trap to OS

- OS copies the page and changes
page mapping in client page
table

- Restarts write instruction

Process

Page
table

Physical
memory

COW

fork

COW
write

child process

39

Copy On Write (2)

Solution 3: Copy On Write (COW)

• Instead of copying all pages,
create shared mappings of
parent pages in child address
space

• Shared pages are protected as
read-only in child

- Reads happen as usual

- Writes generate a protection
fault, trap to OS

- OS copies the page and changes
page mapping in client page
table

- Restarts write instruction

Process

Page
table

Physical
memory

fork

write

copied

child process

40

Memory-Mapped Files (1)

Memory-mapped files

• Mapped files enable processes
to do file I/O using memory
references

- Instead of open(), read(),
write(), close()

• mmap(): bind a file to a virtual
memory region

- PTEs map virtual addresses to
physical frames holding file data

- <Virtual address base + N> = <offset N in file>

• Initially, all pages in mapped region
marked as invalid

- Whenever invalid page is accessed, OS reads a page from file

- When evicted from physical memory, OS writes a page to file

- If page is not dirty, no write needed

Process

Page
table

Physical
memory

File

41

Memory-Mapped Files (2)

Example

if ((fd = open("test.txt", O_RDWR)) == -1) {
perror("open");
exit(1);

}

addr = mmap(NULL, statbuf.st_size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, (off_t)0);
if (addr == MAP_FAILED) {

perror("mmap");
exit(1);

}
close(fd);

printf("%s", addr);
strcpy(addr, buf);
sprintf(addr, "%s to modify some text ", buf);
...
...

42

Memory-Mapped Files (3)

Advantages

• Uniform access for files and memory (just use pointers)

• Less copying

• Several processes can map the same file allowing the pages in
memory to be shared

Drawbacks

• Process has less control over data movement

• Does not generalize to streamed I/O (pipes, sockets, etc.)

Note:

• File is essentially backing store for that region of the virtual
address space (instead of using the swap file)

• Virtual address space not backed by "real" files also called
"anonymous VM(page)"

43

Summary (1)

VM mechanisms

• Physical and virtual addressing

• Partitioning, Paging, Segmentation

• Page table management, TLBs, etc.

VM policies

• Page replacement algorithms

• Memory allocation policies

VM requires hardware and OS support

• MMU (Memory Management Unit)

• TLB (Translation Lookaside Buffer)

• Page tables, etc.

44

Summary (2)

VM optimizations

• Demand paging (space)

• Managing page tables (space)

• Efficient translation using TLBs (time)

• Page replacement policy (time)

Advanced functionality

• Sharing memory

• Copy on write

• Mapped files

