Virtual Memory II

Jo, Heeseung

I Today's Topics

How to reduce the size of page tables?

How to reduce the time for address translation?

I Page Tables

Space overhead of page tables

« The size of the page table for a 32-bit address space with 4KB
pages = about 4MB (per process)

 For example
- Virtual address: 32 bits (4G), Page size: 4KB (=212)
- Page table entries: 22, 4bytes/PTE
How can we reduce this overhead?

e Observation: Only need to map the portion of the address space
actually being used

- Tiny fraction of entire address space
How do we only map what is being used?
 Make the page table structure dynamically extensible
- Linked list or tree?

 Use another level of indirection:

- Two-level, hierarchical, hashed, etc.

I Two-level Page Tables (1)

/ \

outer page
table

0
1 ..-—"///1'
4 100
500 N
L] /
100 500
- 708
9‘?9 S 900
900 /><
page of 929
page table
page table

memory

I Two-level Page Tables (2)

Two-1level page tables

e Virtual addresses have 3 parts:

Master page #

Secondary page #

Offset

« Master page table

- master page number -> secondary page table

« Secondary page table

- secondary page number -> page frame number

logical address

P4

P2

d

.

>

Ty
=
&)
|

P2

outer page —

table

page of
page table

I Two-level Page Tables (3)

Example
e 32-bit address space, 4KB pages, 4bytes/PTE
« Want master page table in one page (4KB)

10 10 12 Physical memory

Master page # Secondary page # Offset I Page frame N
I

v
Page frame Offset P——» Page frame

Physical address Page frame

e s Page frame

—1 - Page frame

\ 4

— Page frame

—1 - Page frame

SR |IN|IW|PBM|lOUGI|O

— Page frame

Master | iz 2

page table | -
|

Secondary page table

I Multi-level Page Tables

Address translation in Alpha AXP Architecture

Three-level page tables

64-bit address divided
into 3 segments

- segd (@x): user code

- segl (11): user stack

- kseg (10): kernel
Alpha 21064

- Page size: 8KB

- Virtual address: 43bits

- Each page table is
one page long

Virtual addiess

=agli=agl Qo0 .. 0 or
Salactor 111 ...1

Fags fable
o e |——@

L1 page table

FPags table enty

LZ pagetable

FPags fable antry

L3 page table

Fage table entry

L

Fhysical addre=s r

| Physical page-frama numbar | Pags offsst I

=

Wain mamary

I Hashed Page Tables (1)

Example
physical
logical address ¢ address
p d r d —m

i Iilil_l’—hm J_T i

hash table

I Hashed Page Tables (2)

Hashed page tables

« Virtual page number is hashed into the hash table

« Each hash table entry contains a linked list of elements that hash
to the same location (in case of collision)

« Each elements contains:
- The virtual page number
- The value of the mapped page frame

- A pointer to the next element in the linked list

10

I Hashed Page Tables (3)

Clustered page tables

A variant of hash page tables

Each entry stores mapping information for a block of consecutive

page tables

Virtual address

Virtual Page Block Number

Block offset

Offset

\ 4

Hash table

VPBN _J’ VPBN
next next
PPN@ PPN@
PPN1 PPN1
PPN2 PPN2
PPN3 PPN3

11

I Inverted Page Tables (1)

logical
address

CPU

physical
address

T

Example
logical .
physical
address i ! i
CPU > pd| p | d i d
A

search l i

page table

physical
memory

d

A

f —

page table

12

I Inverted Page Tables (2)

Inverted page tables

One entry for each real page of memory

Entry consists of the virtual address of the page stored in that
real memory location

- With information about the process that owns that page
Have to manage PID
Decreases memory needed to store each page table

Increases time needed to search the table when a page reference
occurs

Use hash table to limit the search to one, or at most a few, page-
table entries

13

I Paging Page Tables

Addressing page tables
« Where are page tables stored? (and which address space?)
« (1) Physical memory
- Easy to address, no translation required
- But, allocated page tables consume memory for lifetime of VAS
e (2) Virtual memory (0S virtual address space)
- Cold (unused) page table pages can be paged out to disk
- But, addressing page tables requires translation
- Do not page the outer page table (called wiring)

« Now we've paged the page tables, might as well page the entire 0S
address space, too

- Need to wire special code and data (e.g., interrupt and exception
handlers)

14

} TLBs (1)

Let's make address translation efficient

Original page table scheme doubled the cost of memory lookups
 One lookup into the page table, another to fetch the data
Two-level page tables triple the cost!
« Two lookups into the page tables, a third to fetch the data
« This assumes the page table 1s in memory
- If not, the overhead can be larger
How can we make this more efficient?

« Goal: make fetching from a virtual address as efficient as fetching
from a physical address

e Cache the virtual-to-physical translation in hardware

« Translation Lookaside Buffer (TLB, hardware)

- TLB managed by the Memory Management Unit (MMU, hardware)

16

} TLBs (2)

Translation Lookaside Buffers

e Translate virtual page numbers into PTEs

« Can be done in a single machine cycle

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

17

d TLBs (3)

TLB is implemented in hardware

e Fully associative cache (all entries looked up in parallel)

e (Cache tags are virtual page numbers

e Cache values are PTEs (entries from page tables)

« With PTE+offset, MMU can directly calculate the physical address
TLBs exploit locality

e Processes only use a handful of pages at a time
- 16-48 entries in TLB is typical (64-192KB)
- Can hold the "hot set" or "working set" of process

« Hit rates are therefore really important

18

I Hardware Cache

Address (showing bit positions)

Data

3130 --- 131211---2 10
Byte
offset
Hit 20 <10
‘ Tag
Index
Index Valid Tag Data
0
1
2
L q
1021
1022
1023
420 d 32
(-

19

I Direct Mapped Cache

Location determined by address
Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

9]
o)
o)
=
o

000
001
010
011
100
101
110

111

AN
A X
4 d/ \. e
00001 00101 01001 01101 10001 10101 11001 11101
Memory

#Blocks is a
power of 2

Use low-order
address bits

20

I Associative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ad 2 I 12 J 2

e s TTTTTTT]

I How Much Associativity

Increased associativity decreases miss rate
e But with diminishing response time
Simulation of a system with 64KB D-cache, 16-word blocks, SPEC2000
e 1-way: 10.3%
e 2-way: 8.6%
e 4-way: 8.3%
« 8-way: 8.1%

I Translation Using a Page Table

Page table reqgister

Virtual address

31 30 29 28 27---crreerrerierieainnn. 1514 13 12 11 10 9 8 =+ 3210

Virtual page number

Page offset

20 412
‘Valid Physical page number
[] L]
Page table
! 418
If O then page is not
present in memory
209 28 27 eeieiiiiieiiiiiiiaiiiiinianadd 15 14 13 12 11 10 9 8 +----- 3210

Physical page number

Page offset

Physical address

23

I Mapping Pages to Storage

Virtual page
number

Page table
Physical page or
Valid disk address

I}

S

Y

3

Physical memory

T
A
(

A\

\
\
/

= O == O = | = | O = | =t | =k [—h

y
/

/1

Disk storage

T
-
~

24

I Fast Translation Using a TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
| |
1[{0]1 -\\
111]1 y Physical memor
11111 — - y y
1]0]1 o«
0[0][0 T~
1]0]1 o~
Page table
Physical page
Valid Dirty Ref or disk address
_—

~ 1|01 —
11010 o«] Disk storage
1]0]0 ~ //—g\
0/0(0 —< ¢ N
11011 - 7 / | |
101 o | |
0/0]0 7
1[(1]1 ¢« ~ / | |
1111 « ~_
0/0/0 —
1[1]1 ¢

} TLBs (4)

Address translation with TLB

CPU

logical

address |

> p | d

page frame
number number

TLB hit

I YVVVY VY

TLB

p {
TLB miss

g

physical

' address

page table

physical
memory

26

d TLBs (5)

Address translations are mostly handled by the TLB
e More than 99% of translations

 But there are TLB misses occasionally (1%)
Handling TLB misses

« In case of a miss, who places translations into the TLB?
« Hardware (MMU): Intel x86

- Knows where page tables are in memory
- HW access them directly

- Page tables have to be in hardware-defined format
« Software loaded TLB (0S)

- TLB miss faults to 0S, 0S finds right PTE and loads TLB
Must be fast (but, 20-200 cycles typically)

CPU ISA has instructions for TLB manipulation

- Page tables can be in any format convenient for 0S (flexible)

27

logical
T L BS (6) address
CPU —>| p | d
page frame

Managing TLBS number number

TLB hit

« 0S ensures that TLB and page tables are consistent

TRTEEY’

- Something is changed in page tables,
the TLB entry should be invalidated

TLB

« Reload TLB on a process context switch LB miss p{

I

Remember, each process typically has its own page tables

- Need to invalidate all the entries in TLB (flush TLB)

- In IA-32, TLB is flushed automatically
when the contents of CR3 (page directory base register) is changed

page table

- (cf.) Alternatively, we can store the PID as part of the TLB entry, but
this is expensive

« When the TLB misses, and a new PTE is loaded, a cached PTE must be
evicted

- Choosing a victim PTE called the "TLB replacement policy"

- Implemented in hardware, usually simple (e.g., LRU)

28

I Memory Reference (1)

Situation

Process 1is executing on the CPU, and it issues a read to a virtual
address

data

TLB hit PA ‘
TLB
Pa
. ge
TLB miss : tables
PTE

Memory

29

I Memory Reference (2)

The common case (TLB hits, more than 99%)

The
TLB
The
TLB
PTE
MMU
MMU

read/write goes to the TLB in the MMU

does a lookup using the page number of the address

page number matches, returning a PTE

validates that the PTE protection allows reads/writes
specifies which physical frame holds the page

combines the physical frame and offset into a physical address

then reads from that physical address, returns value to CPU

30

I Memory Reference (3)

TLB misses: two implementation choices
« (1) MMU loads PTE from page table in memory

- Hardware managed TLB, 0S not involved in this step

0S has already set up the page tables so that the hardware can access it
directly

e (2) Trap to the 0S
- Software managed TLB, 0S intervenes at this point
0S does lookup in page tables, loads PTE into TLB

0S returns from exception, TLB continues

« After handling TLB misses, there is a valid PTE for the address in
the TLB

« So the requested address is referred as a TLB hit case

31

I Memory Reference (4)

TLB misses: recursive fault

« Page table lookup (by HW or 0S) can cause a recursive fault if page
table is paged out

- Assuming page tables are in 0S virtual address space
- Page fault handler loads page table into physical memory
- Load PTE into TLB
« When TLB has PTE, it restarts translation
- Common case is that the PTE refers to a valid page in memory

- Uncommon case is that TLB faults again on PTE

e.g., page is invalid

32

I Memory Reference (5)

Page faults

 PF can be two cases
- Read/Write/Execute - operation not permitted on page (protection fault)

- Invalid - virtual page not allocated, or page not in physical memory
« TLB traps to the 0S (software takes over)

- Read/Write/Execute - 0S usually will send fault back to the process, or
might be playing tricks

e.g., copy on write, mapped files

- Invalid (Not allocated) - 0S sends fault to the process or allocates a
frame

- Invalid (Not in physical memory) - 0S allocates a frame, reads from disk,
and maps PTE to physical frame (page fault handling)

33

I Memory Reference Summary

1. TLB hit

- Frame is in memory

- Frame PF (generally not possible)
2. TLB miss - page table is in memory

- Update TLB, restart

- Frame is in memory / Frame PF

3. TLB miss - page table is paged out (PF)

- PF handler for page table
- Update TLB, restart
- Frame is in memory / Frame PF

Virtual page

TLB

number ValidDirty Ref Tag

Physical page
address

Physical memory

— || | | |]

OO|O=| =

|| =] al—

aNai e

Page table
Physical page

ValidDirty Ref or disk address

Disk storage

o\ ARTRRER

Y o) Y Y e, | Y Y | TN Y Y QY

—|O| == (O|0O|0|O|O|O|O| O
S P [I) DY N P B Y P Y Y

|

35

