
Virtual Memory I

Jo, Heeseung



2

Today's Topics

Virtual memory implementation

• Paging

• Segmentation



3

Paging Introduction

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Process
A

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0 Page
table A

4KB

User's view
- Contiguous
- Large address space

User space Kernel space



4

Paging (1)

Paging

• Permits the physical address space of a process to be noncontiguous

• Divide physical memory into fixed-sized blocks called frames

• Divide logical memory into blocks of same size called pages

- Page (or frame) size is power of 2 (typically, 512B - 8KB)

- Mostly use 4K in modern OS

• To run a program of size n pages, need to find n free frames and 
load program

• OS keeps track of all free frames

• Set up a page table to translate virtual to physical addresses



5

Paging (2)

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5Process
B

Process
A

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0 Page
table A

Page
table B

User space Kernel space



6

Paging (3)

User's perspective

• Users (and processes) view memory as one contiguous address space 
from 0 through N

- Virtual address space (VAS)

• In reality, pages are scattered throughout the physical memory

- Virtual-to-physical mapping

- This mapping is invisible to the program

• Protection is provided because a program cannot reference memory 
outside of its VAS

- The virtual address 0xdeadcafe maps to different physical addresses for 
different processes



7

Virtual Memory (1)

Example

What happens if two users simultaneously run this application?

#include <stdio.h>

int n = 0;

int main ()
{

printf ("&n = 0x%08x\n", &n);
}

% ./a.out
&n = 0x08049508



8

Paging (4)

Translating addresses

• A virtual address has two parts:

<virtual page number (VPN)::offset>

• VPN is an index in a page table

• Page table determines page frame number (PFN)

• Physical address is <PFN::offset>

Page tables

• Managed by OS

• Map VPN to PFN

- VPN is the index into the table that determines PFN

• One page table entry (PTE) per page in virtual address space, i.e. 
one PTE per VPN



9

Paging (5)

Address translation architecture



10

VPN

Paging (6)

Paging example

• Virtual address: 32 bits (4G)

• Physical address: 20 bits (1M)

• Page size: 4KB

• Offset: 12 bits

• VPN: 20 bits

• Page table entries: 220

0

Virtual address (32bits)

0 0 0 4 A F E

2 7

D 0

3 1

F E

B 6

A 4

…

B 6 A F E

Physical address (20bits)

Page
tables

Offset

PFN



11

Translation Using a Page Table



12

Paging (7)

Page Table Entries (PTEs)

• Valid bit (V) says whether or not the PTE can be used

- It is checked each time a virtual address is used

• Reference bit (R) says whether the page has been accessed

- It is set when a read or write to the page occurs

• Modify bit (M) says whether or not the page is dirty

- It is set when a write to the page occurs

• Protection bits (Prot) control which operations are allowed on the 
page

- Read-only, Read-write, Execute-only, etc.

• Page frame number (PFN) determines physical page

V R M Prot Page Frame Number (PFN)

1 1 1 2 20



13

Paging (8)

Protection

• Memory protection is implemented by protection bit for each frame

• Valid / Invalid bit

- "Valid" indicates that the associated page is in the process' virtual 
address space, and is thus a legal page

- "Invalid" indicates that the page is not in the process' virtual address 
space

• Finer level of protection is possible for valid pages

- Read-only

- Read-write

- Execute-only



14

Mapping Pages to Storage



15

Paging (9)

Advantages

• Easy to allocate physical memory

- Physical memory is allocated from free list of frames

- To allocate a frame, just remove it from its free list

• No external fragmentation

• Easy to "page out" chunks of a program

- All chunks are the same size (page size)

- Use valid bit to detect reference to "paged-out" pages

- Pages sizes are usually chosen to be convenient multiple of disk block 
sizes

• Easy to protect pages from illegal accesses

• Easy to share pages



16

Paging (10)

Disadvantages

• Can still have internal fragmentation

- Process may not use memory in exact multiple of pages

• Memory reference overhead (Performance overhead)

- 2 references per address lookup (page table, then memory)

- Solution: get a hardware support (TLB)

• Memory required to hold page tables can be large 
(Space overhead)

- Need one PTE per page in virtual address space

- 32-bit address space with 4KB pages = 220 PTEs

- 4 bytes/PTE = 4MB per page table

- OS's typically have separate page tables per process
(25 processes = 100MB of page tables)

- Solution: page the page tables, multi-level page tables, inverted page 
tables, etc.



17

Paging Summary

Virtual memory

Page 3

Page 2

Page 1

Page 0

V R M Prot Page Frame Number (PFN)

1 1 1 2 20

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Physical memory



18

Demand Paging (1)

Demand paging

• Bring a page into memory only 
when it is needed

- Less I/O needed

- Less memory needed

- Faster response 

- More users

• OS uses main memory as a (page) cache

- Cache of all of the data allocated by processes in the system

- When physical memory fills up, replacing (eviction and load)

• Evicted pages go to disk 

- Only need to write if they are dirty

- Evict to a swap file on disk

- Movement of pages between memory/disks is done by the OS (page fault)

- Transparent to the application



19

Demand Paging (2)

Page faults

• Referencing a virtual address 
in an evicted page

- When the page was evicted, 
the OS sets the PTE as invalid

- Stores (in PTE) the location of 
the page in the swap file

- Accessing the page cause an exception

• The OS will run the page fault handler in response

- Locating the page in swap file via invalid PTE

- Handler reads page into a physical frame

- Updates PTE to point to it and to be valid

- Handler restarts the faulted process

• Where does the page that's read in go?

- Must evict something else -> Which one? -> page replacement algorithm

- OS typically tries to keep a pool of free pages around so that 
allocations don't inevitably cause evictions



20

Demand Paging (3)

Handling a page fault

page_fault_handler()
{

...

...
}



21

Demand Paging (4)

Why does this work?

• Locality

- Temporal locality: locations referenced recently tend to be referenced 
again soon

- Spatial locality: locations near recently referenced locations are 
likely to be referenced soon

• Locality means paging can be infrequent

- Once you've paged something in, it will be used many times

- On average, you use things that are paged in

- But this depends on many things:

· Degree of locality in application

· Page replacement policy

· Amount of physical memory

· Application's reference pattern and memory footprint



22

Demand Paging (5)

Why is this "demand" paging?

• When a process first starts up, it has a brand new page table, with 
all PTE valid bits "false"

- All pages are empty

- No pages are yet mapped to physical memory

• When the process starts executing:

- Instructions immediately fault on both code and data pages 
(Cold miss / Cold page fault)

- Faults stop when all necessary code/data pages are in memory

- Only the code/data that is needed (demanded!!) by process needs to be 
loaded

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 5

Page 3

Page 2

Page 1

Page 0



23

Segmentation (1)

Segmentation

• Partitions memory into logically related data units

- Code, stack, heap, etc.

• Users view memory as a collection of variable-sized segments

- With no necessary ordering among them

- Virtual address: <Segment #::Offset>

• Different segments can grow or shrink independently

- Without affecting each other

• Natural extension of variable-sized partitions

- Variable-size partitions: 1 segment / process

- Segmentation: many segments / process



24

Segmentation (2)

User's view of a program



25

Segmentation (3)



26

Segment# offset

Segmentation (4)

Hardware support

• Multiple base/limit pairs, one per segment (segment table)

• Segments are named by segment #, used to index into table

Virtual address

+<?
Yes

No

protection fault

limit base

Physical memory



27

Segmentation (5)

Advantages

• Simplifies the handling of data structures that are growing or 
shrinking

• Easy to protect segments

- With each entry in segment table, associate a valid bit 

- Protection bits (read/write/execute) are also associated with each 
segment table entry

• Easy to share segments

- Put same translation into base/limit pair

- Code/data sharing occurs at segment level

- e.g. shared libraries

Physical memory

data

code + data

code



28

Segmentation (6)

Disadvantages

• Cross-segment addresses

- Segments need to have same segment # 
for pointers to them to be shared 
among processes

- Otherwise, use indirect addressing only

• Large segment tables

- Keep in main memory, 
use hardware cache for speed

• External fragmentation

- Since segments vary in length, memory allocation is a dynamic storage-
allocation problem



30

Paging vs. Segmentation (1)

Paging Segmentation

Block size Fixed (4KB to 64KB) Variable

Memory addressing page number + offset segment + offset

Replacement
Easy 

(all same size)
Difficult

(find where segment fits)

Fragmentation Internal External

Disk traffic
Efficient

(optimized for page size)

Inefficient
(may have small or
large transfers)

Linear address space 1 Many

Transparent to the
programmers?

Yes No



31

Paging vs. Segmentation (2)

Paging Segmentation

Can the total address space
exceed the size of physical

memory?
Yes Yes

Can codes and data be
distinguished and separately

protected?
No Yes

Can tables whose size
fluctuates be accommodated

easily?
No Yes

Is sharing of codes easy? No Yes

Why was this technique
invented?

large linear 
address space

logically independent 
address spaces

(sharing and protection)



32

Paging vs. Segmentation (3)

Hybrid approaches

• Paged segments

- Segmentation with Paging

- Segments are a multiple of a page size

• Multiple page sizes

- 4KB, 2MB, and 4MB page sizes are supported in IA32

- 8KB, 16KB, 32KB or 64KB in Alpha AXP Architecture
(43, 47, 51, or 55 bits virtual address)



33

Segmentation with Paging (1)

Combine segmentation and paging

• Use segments to manage logically related units

- Code, data, heap, etc.

- Segments vary in size, but usually large (multiple pages)

• Use pages to partition segments into fixed size chunks

- Makes segments easier to manage within physical memory

- Segments become "pageable"

· rather than moving segments into and out of memory, just move page portions 
of segments

- No external fragmentation

• The IA-32 supports segments and paging



34

Segmentation with Paging (2)

IA-32

segment 
table

2 level 
page 
table


