
Memory Management

Jo, Heeseung

2

Today's Topics

Why is memory management difficult?

Old memory management techniques:

• Fixed partitions

• Variable partitions

• Swapping

Introduction to virtual memory

3

Memory Management (1)

Goals

• To provide a convenient abstraction for programming

• To allocate scarce memory resources among competing processes

- To maximize performance with minimal overhead

• To provide isolation between processes

Why is it so difficult?

4

Single/Batch Programming

An OS with one user process

• Programs use physical addresses directly

• OS loads job, runs it, unloads it

User
Program

Operating System
in RAM

0

0xFFFF..

User
Program

Operating System
in ROM

User
Program

Operating System
in RAM

Device Drivers
in ROM

5

Multiprogramming

Multiprogramming

• Need multiple processes in memory at once

- To overlap I/O and CPU of multiple jobs

- Each process requires variable-sized and contiguous space

• Requirements

- Protection: restrict which addresses and processes can use

- Fast translation: memory lookups must be fast, in spite of protection
scheme

- Fast context switching: updating memory hardware (for protection and
translation) should be quick

Virtual address <-> Physical address

(App. view) (Managed by kernel)

6

Fixed Partitions (1)

Operating
System

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

0x1000

0x2000

0x5000

0x4000

0x3000

0

0x2000

0x0362

Base register

Virtual address

+
0x2362

7

Fixed Partitions (2)

Physical memory is broken up into fixed partitions

• Size of each partition is the same
and fixed

• The number of partitions
= degree of multiprogramming

• Hardware requirements: base register

- Physical address = virtual address + base register

- Base register loaded by OS when it switches to a process

Advantages

• Easy to implement, fast context switch

Problems

• Internal fragmentation: memory in a partition not used by a process
is not available to other processes

• Partition size: one size does not fit all

- Fragmentation vs. Fitting large programs

Operating
System

Partition 0

Partition 1

Partition 2

Partition 3

Partition 4

0x1000

0x2000

0x5000

0x4000

0x3000

0

0x2000

0x0362

Base register

Virtual address

+
0x2362

8

Fixed Partitions (3)

Improvement

• Partition size need not be equal

• First fit allocation

- Allocate to the closest job
whose size fits in an empty
partition

- Need scanning

• Best fit allocation

- Pick the largest job that fits
in an empty partition

- Need more scanning (more overhead)

• IBM OS/MFT
(Multiprogramming with a Fixed
number of Tasks)

Operating
System

Partition 0

Partition 1

Partition 2

Partition 4

0x1000

0x2000

0x8000

0x4000

0

9

Variable Partitions (1)

Operating
System

Partition 0

Partition 1

Partition 2

Partition 3

offset

P1's Base

Base register

Virtual address

+<?
Yes

No

protection fault

P1's Limit

Limit register

10

Variable Partitions (2)

Physical memory is broken up
into variable-sized partitions

• IBM OS/MVT

• Hardware requirements: base register
and limit register

- Physical address = virtual address + base register

- Base register loaded by OS when it switches to a process

• The role of limit register: protection

- If (physical address > base + limit), then raise a protection fault

Allocation strategies

• First fit: Allocate the first hole that is big enough

• Best fit: Allocate the smallest hole that is big enough

• Worst fit: Allocate the largest hole

Operating
System

Partition 0

Partition 1

Partition 2

Partition 3

offset

P1's Base

Base register

Virtual address

+<?
Yes

No

protection fault

P1's Limit

Limit register

11

Variable Partitions (3)

Advantages

• No internal fragmentation

- Simply allocate partition size to be just big enough for process

Problems

• External fragmentation

- As we load and unload jobs, holes are left scattered throughout physical
memory

• Solutions to external fragmentation:

- Compaction

- Paging and segmentation

12

Overlays (1)

Overlays for a two-pass assembler

13

Overlays (2)

Overlays

• Keep in memory only those instructions and data that are needed at
any given time

• Normally implemented by user

Advantages

• Needed when a process is larger than the amount of memory allocated
to it

• No special support needed from operating system

Problems

• Complex

- Programming design of overlay structure

14

Swapping (1)

15

Swapping (2)

Swapping

• Temporarily swapping out of memory to a backing store

• Bringing back into memory later for continued execution

• Backing store

- Fast disk

- Large enough to accommodate copies of all memory images

- Must provide direct access to these memory images

Problems

• Major part of swap time is transfer time

- Directly proportional to the amount of memory swapped

• Swapping a process with a pending I/O ?

- Do not swap a process with pending I/O

• Modern OS uses modified swapping mechanisms (demand paging) with
virtual memory

16

Virtual Memory

Example

What happens if two users simultaneously run this application?

#include <stdio.h>

int n = 0;

int main ()
{

printf ("&n = 0x%08x\n", &n);
}

% ./a.out
&n = 0x08049508

17

Virtual Memory Concept

1

2

3

4

5

6

7

18

Virtual Memory Concept

1

2
5

4

5

6

7

3
5

5

5

19

Virtual Memory Concept

1

2

3

4

5

6

7

20

Virtual Memory Concept

1

2

3

4

5

6

7

21

Virtual Memory Concept

1

2

3

4

5

6

7

Process

Virtual address
Physical address

OS & CPU
with Page
Table

22

Virtual Memory (2)

Virtual Memory (VM)

• Use virtual addresses for memory references

- Large and contiguous

• CPU & OS perform address translation at run time

- From a virtual address to the corresponding physical address

• Physical memory is dynamically allocated or released on demand

- Programs execute without requiring their entire address space to be
resident in physical memory

- Lazy loading

• Virtual addresses are private to each process

- Each process has its own isolated virtual address space

- One process cannot name addresses visible to others

23

Virtual Memory (3)

Virtual addresses

• To make it easier to manage memory of multiple processes, make
processes use virtual addresses (logical addresses)

• Virtual addresses are independent of the actual physical location
of data referenced

• OS determines location of data in physical memory

Memory access procedures

• Instructions executed by the CPU issue virtual addresses

• Virtual addresses are translated by hardware into physical
addresses (with help from OS)

• Virtual address space: The set of virtual addresses that can be
used by a process

There are many ways to translate virtual addresses into physical
addresses

24

Virtual Memory (4)

Advantages

• Separates user's logical memory from physical memory

- Abstracts main memory into an extremely large, uniform array of storage

- Frees programmers from the concerns of memory-storage limitations

• Programs can use VAS, larger than physical memory

- Allows the execution of processes that may not be completely in memory

• More programs could be run at the same time

• Less I/O would be needed (with page swapping)

- to load or swap each user program into memory

• Allows processes to easily share files and address spaces

• Efficient for protection and process creation

25

Virtual Memory (5)

Disadvantages

• Performance!!!

- In terms of time and space

Implementation

• Paging

• Segmentation

