CPU Scheduling

Jo, Heeseung

I Today's Topics

General scheduling concepts
Scheduling algorithms

Case studies

I CPU Scheduling (1)

CPU scheduling

e Deciding which process to run next, given a set of runnable
processes

 Happens frequently, hence should be fast

Scheduling points

terminated

Q)
3
=t
D
o
-
e 2
N
[g
k
—t
D
x.
‘#

W ooroii i

I/O or event Complet|on scheduler dispatch

I/O or event wait

I CPU Scheduling (2)

Scheduling algorithm goals
« All systems

- No starvation

- Fairness: giving each process a fair share of the CPU

- Balance: keeping all parts of the system busy
 Batch systems

- Throughput: maximize jobs per hour

- Turnaround time: minimize time between submission and termination

- CPU utilization: keep the CPU busy all the time
 Interactive systems

- Response time: respond to requests quickly
e Real-time systems

- Meeting deadlines: avoid losing data

- Predictability: avoid quality degradation in multimedia system

B CPU Scheduling (3)

Starvation

« A situation where a process is prevented from making progress
because another process has the resource it requires

- Resource could be the CPU or a lock
« A poor scheduling policy can cause starvation

- If a high-priority process always prevents a low-priority process from
running on the CPU

* Synchronization can also cause starvation

- One thread always beats another when acquiring a lock

I CPU Scheduling (4)

Non-preemptive scheduling

e The scheduler waits for the running job to voluntarily yield the
CPU

e Jobs should be cooperative

Preemptive scheduling
 The scheduler can interrupt a job and force a context switch

 What happens
- If a process is preempted in the midst of updating the shared data?

- If a process in a system call is preempted?

I Execution Characteristics (1)

CPU burst vs. I/0 burst
« A CPU-bound process

e An I/0-bound process

@ | —— — ——

/

Long CPU burst

Waiting for I/O

Short CPU burst \
// i
L

1 I I I 1 I 1 1
(b) E - U u | | — | -

-

n
U

Time

Execution Characteristics (2)

Histogram of CPU-burst Times
« Most are short CPU burst
 Rarely long CPU burst

 Reference for CPU scheduling algorithm design

A

160 |-

140 |-

120 |-

100

80

frequency

60

40 |

20 |-

!
16 24 32
burst duration (milliseconds)

I Process State Queues

: ready queue CPU
I/O queue «— |/O request |[&——
time slice :
expired

iInterrupt wait for an
OCCUrs interrupt

child fork a
@ child)

§ FCFS/FIFO

First-Come, First-Served / First-In, First-Out
e Jobs are scheduled in order that they arrive
 "Real-world" scheduling of people in lines

- e.9g., supermarket, bank tellers, McDonalds, etc.
« Typically, non-preemptive
« Jobs are treated equally: no starvation
Problems

 Average waiting time can be large if small jobs wait behind long
ones

- Basket vs. cart

« May lead to poor overlap of I/0 and CPU

10

§ FCFS/FIFO

First-Come, First-Served / First-In, First-Out

i FIFO
Process ArTr.lval Burst
ne P, P, P Py
Pro 0.0 T - | |
Pz 5.0 4 0 7 9 12 16
P3 4.0 1
P4 5.0 4

12

 SIF

Shortest Job First
e Choose the job with the smallest expected CPU burst
e Can prove that SJF has optimal min. average waiting time
- Only when all jobs are available simultaneously
* Non-preemptive
Problems
« Impossible to know the size of future CPU burst
 Can you make a reasonable guess?

« Can potentially starve

13

§ SRTF

Shortest Remaining Time First
 Preemptive version of SJF

« If a new process arrives, rethink preemption

- With CPU burst length less than remaining time of current executing
process, preempt

- F
Process ArTr.lval Burst >
ne P, P P, Py

P00 7| e e

P, 2.0 4 0 7 8 12 SRTF16

P, 40 1

P, | P, [Py P p p
P 50 4 0 G A
0 2 4 5 7 11 16

14

d RR

Round Robin

Ready Q is treated as a circular FIFO Q

Each job is given a time slice (or time quantum)
- Usually 10-100 ms

Great for timesharing
- No starvation

- Typically, higher average turnaround time than SJF, but better response
time

Preemptive

What do you set the quantum to be?

- A rule of thumb: 80% of the CPU bursts should be shorter than the time
quantum

- Longer quantum : Higher throughput

- Shorter quantum : Shorter response

Treats all jobs equally

15

I Example of RR with Time Quantum

= 4
Process Art}val Burst
Time
fy 0.0 24
P, 1.0 3
F} 2.0 7/
P, P, P, P, P; P, P, P, P,

16

I Example of RR with Time Quantum

= 4
Process Arr.1va1 Burst
Time
PJ 0.0 24
Pz 1.0 5
P3 2.0 7/
Pl P2 P3 P1 P2 P3 Pl Pl Pl Pl
0 8 12 16 17 20 24 28 32 36

17

I Exercise

FCFS

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

18

I Exercise

SJF

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

19

I Exercise

SRTF

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

20

I Exercise

RR (Q = 4)

Process Arh;val Burst
Time
P, 0.0 3
P, 1.0 5
Ps 2.0 7/
P, 5.0 6
Ps 6.0 3
I N I A N I |
T 1 1 T |]
10 15

21

I Exercise

RR (Q = 5)

Process Arh;val Burst
Time
P, 0.0 3
P, 1.0 5
Ps 2.0 7/
P, 5.0 6
Ps 6.0 3
I N I A N I |
T 1 1 T |]
10 15

22

I Priority Scheduling (1)

Priority scheduling

Choose job with highest priority to run next

SJF = Priority scheduling, where
priority = expected length of CPU burst

Round-robin or FIFO within the same priority
Can be either preemptive or non-preemptive
Priority 1is dynamically adjusted

Modeled as a Multi-level Feedback Queue (MLFQ)

23

I Priority Scheduling (2)

Starvation problem

« If there is an endless supply of high priority jobs, no low
priority job will ever run

Solution: Aging
« Increase priority as a function of wait time
 Decrease priority as a function of CPU time

 Many ugly heuristics have been explored in this area

24

I Priority Scheduling (3)

Priority inversion problem

e« A situation where a higher-priority job
is unable to run because a lower-priority job

is holding a resource it needs, such as a lock ‘fgﬂﬁi&ﬁéjléﬁ
Bus management priority inversion -:
task : : |
| |
I ' I
communications ' : l !
L 1 . 1 |
task l | ; | . |
| | |
meteorological data -
gathering task
v lock_acquire() lock_release()

Low Priority

« What really happened on Mars? - google search

25

http://en.wikipedia.org/wiki/File:Sojourner_on_Mars_PIA01122.jpg

I Priority Scheduling (4)

Priority inheritance protocol (PIP)

e The higher-priority job can donate its priority to the lower-
priority job holding the resource it requires

Priority ceiling protocol (PCP)

 The priority of the low-priority thread is raised immediately when
it gets the resource

 The priority ceiling value must be predetermined

26

I Multilevel Queue Scheduling

Ready queue 1s partitioned into separate queues, eg:
« foreground (interactive)
e background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:
 foreground — RR
* background - FCFS

Scheduling must be done between the queues:
 Fixed priority scheduling
e 1.e., serve all from foreground then from background

 Possibility of starvation

27

I Multilevel Queue Scheduling

Process permanently in a given queue

Starvation problem

highest priority

interactive editing processes

batch processes

el

student processes

lowest priority

28

I Multilevel Feedback Queue

Multilevel Feedback Queue

Multilevel feedback queue scheduling, which allows a job to move
between the various queues

Queues have priorities

When a process uses too much CPU time, move to a lower-priority
queue

- Aging
- Leaves I/0-bound and interactive processes in the higher-priority queues

When a process waits too long in a lower priority queue, move to a
higher-priority queue

- Prevents starvation

29

I Example of Multilevel Feedback Queue

Three queues:

e Q0 - RR with time quantum
8 milliseconds

« Q1 - RR time quantum
16 milliseconds

* Q2 - FCFS
Scheduling

7

A 4

Qo

> gquantum = 8
Q1

> quantum = 16
Q2 _

o
Lz

FCES

Y

« A new job enters queue Q@ which is served FCFS

- When it gains CPU, job receives 8 milliseconds

- If 1t does not finish in 8 milliseconds, job is moved to queue Q1

« At Q1 job is again served FCFS and receives 16 additional
milliseconds

- If it still does not complete, it is preempted and moved to queue Q2

I UNIX Scheduler (1)

Characteristics
 Preemptive
e Priority-based
- The process with the highest priority always runs
- 170 priority levels (Solaris 2)
- @ - 39 priority levels (Linux)
e Time-shared (based on RR)
- Based on timeslice (or quantum)
e MLFQ (Multi-Level Feedback Queue)
- Priority scheduling across queues, RR within a queue

- Processes dynamically change priority

31

UNIX Scheduler (2)

General principles
 Favor I/0-bound processes over CPU-bound processes

- I/0-bound processes typically run using short CPU bursts

- Provide good interactive response

Don't want editor to wait until CPU hog finishes quantum
- CPU-bound processes should not be severely affected
« No starvation

- Use aging

32

I Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available
Homogeneous processors within a multiprocessor
Asymmetric multiprocessing

« Only one processor accesses the system data structures, alleviating
the need for data sharing

Symmetric multiprocessing (SMP)

« Each processor is self-scheduling, all processes in common ready
queue, or each has 1ts own private queue of ready processes

 Currently, most common
Processor affinity

 Process has affinity for processor on which it is currently running
« Soft affinity
 Hard affinity

33

NUMA and CPU Scheduling

i Sj:::et;wnh Szbcovfes
CPU CPU
\ ‘S/OW
fast access Qee, fast access
e‘SS
memory memory
computer

Note that memory-placement algorithms
can also consider affinity

I Multithreaded Multicore System (Hyperthreading)

Recent trend to place multiple processor cores on same physical
chip

 Faster and consumes less power

Multiple H/W threads per core also growing (hyperthreading)

 Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

e Hardware level multithreading

C compute cycle M memory stall cycle
HiEae C M C M C M C M
time g
thread G M c M c M c
theady | @ M c M c M c

time - 35

