
CPU Scheduling

Jo, Heeseung



2

Today's Topics

General scheduling concepts

Scheduling algorithms

Case studies



3

CPU Scheduling (1)

CPU scheduling

• Deciding which process to run next, given a set of runnable 
processes

• Happens frequently, hence should be fast

Scheduling points



4

CPU Scheduling (2)

Scheduling algorithm goals

• All systems

- No starvation

- Fairness: giving each process a fair share of the CPU

- Balance: keeping all parts of the system busy

• Batch systems

- Throughput: maximize jobs per hour

- Turnaround time: minimize time between submission and termination

- CPU utilization: keep the CPU busy all the time

• Interactive systems

- Response time: respond to requests quickly

• Real-time systems

- Meeting deadlines: avoid losing data

- Predictability: avoid quality degradation in multimedia system



5

CPU Scheduling (3)

Starvation

• A situation where a process is prevented from making progress 
because another process has the resource it requires

- Resource could be the CPU or a lock

• A poor scheduling policy can cause starvation

- If a high-priority process always prevents a low-priority process from 
running on the CPU

• Synchronization can also cause starvation

- One thread always beats another when acquiring a lock



6

CPU Scheduling (4)

Non-preemptive scheduling

• The scheduler waits for the running job to voluntarily yield the 
CPU

• Jobs should be cooperative

Preemptive scheduling

• The scheduler can interrupt a job and force a context switch

• What happens

- If a process is preempted in the midst of updating the shared data?

- If a process in a system call is preempted?



7

Execution Characteristics (1)

CPU burst vs. I/O burst

• A CPU-bound process

• An I/O-bound process



8

Execution Characteristics (2)

Histogram of CPU-burst Times

• Most are short CPU burst

• Rarely long CPU burst

• Reference for CPU scheduling algorithm design



9

Process State Queues



10

FCFS/FIFO

First-Come, First-Served / First-In, First-Out

• Jobs are scheduled in order that they arrive

• "Real-world" scheduling of people in lines

- e.g., supermarket, bank tellers, McDonalds, etc. 

• Typically, non-preemptive

• Jobs are treated equally: no starvation

Problems

• Average waiting time can be large if small jobs wait behind long 
ones

- Basket vs. cart

• May lead to poor overlap of I/O and CPU



12

FCFS/FIFO

First-Come, First-Served / First-In, First-Out

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Process
Arrival
Time

Burst

0

FIFO

7 9 12 16

P1 P2 P3 P4



13

SJF

Shortest Job First

• Choose the job with the smallest expected CPU burst

• Can prove that SJF has optimal min. average waiting time

- Only when all jobs are available simultaneously

• Non-preemptive

Problems

• Impossible to know the size of future CPU burst

• Can you make a reasonable guess?

• Can potentially starve



14

SRTF

Shortest Remaining Time First

• Preemptive version of SJF

• If a new process arrives, rethink preemption

- With CPU burst length less than remaining time of current executing 
process, preempt

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4

Process
Arrival
Time

Burst

0

SJF

7 8 12 16

P1 P3 P2 P4

0

SRTF

7 11 16

P1 P3P2 P4P2 P1

2 4 5



15

RR

Round Robin

• Ready Q is treated as a circular FIFO Q

• Each job is given a time slice (or time quantum)

- Usually 10-100 ms

• Great for timesharing

- No starvation

- Typically, higher average turnaround time than SJF, but better response 
time

• Preemptive

• What do you set the quantum to be?

- A rule of thumb: 80% of the CPU bursts should be shorter than the time 
quantum

- Longer quantum : Higher throughput

- Shorter quantum : Shorter response

• Treats all jobs equally



16

Example of RR with Time Quantum = 4

P1 P2 P3 P1 P3 P1 P1 P1

0 4 7 11 15 18 22 26 30 34

P1

Process
Arrival
Time

Burst

P1 0.0 24

P2 1.0 3

P3 2.0 7



17

Example of RR with Time Quantum = 4

P1 P2 P3 P1 P2 P1 P1 P1

0 4 8 12 16 17 24 28 32 36

P1

Process
Arrival
Time

Burst

P1 0.0 24

P2 1.0 5

P3 2.0 7

P3

20



18

Exercise

FCFS

P1 0.0 3

P2 1.0 5

P3 2.0 7

P4 5.0 6

P5 6.0 3

Process
Arrival
Time

Burst

0 5 10 15 20 25



19

Exercise

SJF

P1 0.0 3

P2 1.0 5

P3 2.0 7

P4 5.0 6

P5 6.0 3

Process
Arrival
Time

Burst

0 5 10 15 20 25



20

Exercise

SRTF

P1 0.0 3

P2 1.0 5

P3 2.0 7

P4 5.0 6

P5 6.0 3

Process
Arrival
Time

Burst

0 5 10 15 20 25



21

Exercise

RR (Q = 4)

P1 0.0 3

P2 1.0 5

P3 2.0 7

P4 5.0 6

P5 6.0 3

Process
Arrival
Time

Burst

0 5 10 15 20 25



22

Exercise

RR (Q = 5)

P1 0.0 3

P2 1.0 5

P3 2.0 7

P4 5.0 6

P5 6.0 3

Process
Arrival
Time

Burst

0 5 10 15 20 25



23

Priority Scheduling (1)

Priority scheduling

• Choose job with highest priority to run next

• SJF = Priority scheduling, where
priority = expected length of CPU burst

• Round-robin or FIFO within the same priority

• Can be either preemptive or non-preemptive

• Priority is dynamically adjusted

• Modeled as a Multi-level Feedback Queue (MLFQ)



24

Priority Scheduling (2)

Starvation problem

• If there is an endless supply of high priority jobs, no low 
priority job will ever run

Solution: Aging

• Increase priority as a function of wait time

• Decrease priority as a function of CPU time

• Many ugly heuristics have been explored in this area



25

Priority Scheduling (3)

Priority inversion problem

• A situation where a higher-priority job 
is unable to run because a lower-priority job 
is holding a resource it needs, such as a lock

• What really happened on Mars? - google search

lock_acquire()

lock_acquire()

lock_release()

Bus management
task

meteorological data
gathering task

communications
task

priority inversion

Pathfinder, 1997

High Priority

Low Priority

http://en.wikipedia.org/wiki/File:Sojourner_on_Mars_PIA01122.jpg


26

Priority Scheduling (4)

Priority inheritance protocol (PIP)

• The higher-priority job can donate its priority to the lower-
priority job holding the resource it requires

Priority ceiling protocol (PCP)

• The priority of the low-priority thread is raised immediately when 
it gets the resource

• The priority ceiling value must be predetermined



27

Multilevel Queue Scheduling

Ready queue is partitioned into separate queues, eg:

• foreground (interactive)

• background (batch)

Process permanently in a given queue

Each queue has its own scheduling algorithm:

• foreground – RR

• background – FCFS

Scheduling must be done between the queues:

• Fixed priority scheduling

• i.e., serve all from foreground then from background

• Possibility of starvation



28

Multilevel Queue Scheduling

Process permanently in a given queue

• Starvation problem



29

Multilevel Feedback Queue

Multilevel Feedback Queue

• Multilevel feedback queue scheduling, which allows a job to move 
between the various queues

• Queues have priorities

• When a process uses too much CPU time, move to a lower-priority 
queue

- Aging

- Leaves I/O-bound and interactive processes in the higher-priority queues

• When a process waits too long in a lower priority queue, move to a 
higher-priority queue

- Prevents starvation



30

Example of Multilevel Feedback Queue

Three queues: 

• Q0 - RR with time quantum 
8 milliseconds

• Q1 - RR time quantum 
16 milliseconds

• Q2 - FCFS

Scheduling

• A new job enters queue Q0 which is served FCFS

- When it gains CPU, job receives 8 milliseconds

- If it does not finish in 8 milliseconds, job is moved to queue Q1

• At Q1 job is again served FCFS and receives 16 additional 
milliseconds

- If it still does not complete, it is preempted and moved to queue Q2

Q0

Q1

Q2



31

UNIX Scheduler (1)

Characteristics

• Preemptive

• Priority-based

- The process with the highest priority always runs

- 170 priority levels (Solaris 2)

- 0 - 39 priority levels (Linux)

• Time-shared (based on RR)

- Based on timeslice (or quantum)

• MLFQ (Multi-Level Feedback Queue)

- Priority scheduling across queues, RR within a queue

- Processes dynamically change priority



32

UNIX Scheduler (2)

General principles

• Favor I/O-bound processes over CPU-bound processes

- I/O-bound processes typically run using short CPU bursts

- Provide good interactive response

· Don't want editor to wait until CPU hog finishes quantum

- CPU-bound processes should not be severely affected

• No starvation

- Use aging



33

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available

Homogeneous processors within a multiprocessor

Asymmetric multiprocessing

• Only one processor accesses the system data structures, alleviating 
the need for data sharing

Symmetric multiprocessing (SMP)

• Each processor is self-scheduling, all processes in common ready 
queue, or each has its own private queue of ready processes

• Currently, most common

Processor affinity

• Process has affinity for processor on which it is currently running

• Soft affinity

• Hard affinity



34

NUMA and CPU Scheduling

Note that memory-placement algorithms 
can also consider affinity



35

Multithreaded Multicore System (Hyperthreading)

Recent trend to place multiple processor cores on same physical 
chip

• Faster and consumes less power

Multiple H/W threads per core also growing (hyperthreading)

• Takes advantage of memory stall to make progress on another thread 
while memory retrieve happens

• Hardware level multithreading


