
Synchronization II

Jo, Heeseung

2

Today's Topics

Spinlock is not enough

• What if a lock is held by others?

• What if a condition is not met inside the critical section?

Higher-level synchronization mechanisms

• Semaphores

• Monitors

3

Higher-level Synchronization

Motivation

• Spinlocks and disabling interrupts are useful only for very short
and simple critical sections

- Wasteful otherwise

- These primitives are "primitive" - don't do anything besides mutual
exclusion

• Need higher-level synchronization primitives that

- Block waiters

- Leave interrupts enabled within the critical section

• Two common high-level primitives:

- Semaphores: binary (mutex) and counting

- Monitors: Language construct with condition variables

• We'll use our "atomic" locks as primitives to implement them

4

Semaphores (1)

Semaphores

• A synchronization primitive higher level than locks

• Invented by Dijkstra in 1968, as part of the "THE" OS

• Does not require busy waiting

Manipulated atomically through two operations:

• Wait (S): decrement, block until semaphore is open
= P(), after Dutch word for test, also called down()

• Signal (S): increment, allow another to enter
= V(), after Dutch word for increment, also called up()

5

Semaphores (2)

Blocking in semaphores

• Each semaphore has an associated queue of processes/threads

• When wait() is called by a thread,

- If semaphore is "open", thread continues

- If semaphore is "closed", thread blocks, waits on queue

• signal()

- Opens the semaphore

- If thread(s) are waiting on a queue, one thread is unblocked

• In other words, semaphore has history

- The history is a counter and a queue

- If counter falls below 0, then the semaphore is closed

- wait() decreases the counter while signal() increases it

6

Implementing Semaphores

typedef struct {
int value; // 1 or N
struct process *L;

} semaphore;

void wait (semaphore S) {
S.value--;
if (S.value < 0) {

add this process to S.L;
block ();

}
}

void signal (semaphore S) {
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup (P);

}
}

wait() / signal()
are critical
sections!

Hence, they must be
executed atomically

HOW??

Algorithm

H/W instruction

Interrupt
disable/enable

8

Types of Semaphores

Binary semaphore (a.k.a mutex)

• Guarantees mutually exclusive access to resource

• Only one thread/process allowed entry at a time

• Counter is initialized to 1

Counting semaphore

• Represents a resource with many units available

- e.g., 5 printers

• Allows threads/processes to enter as long as more units are
available

• Counter is initialized to N (=units available)

9

Deadlock and Starvation

Deadlock

• Two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

• Let S and Q be two semaphores
initialized to 1

Starvation

• Indefinite blocking

• A process may never be removed from the semaphore queue in which it
is suspended

Priority Inversion

• Scheduling problem when lower-priority process holds a lock needed
by higher-priority process

• Solved via priority-inheritance protocol

P0 P1
wait (S); wait (Q);
wait (Q); wait (S);

... ...

... ...
signal (S); signal (Q);
signal (Q); signal (S);

10

Classical Problems of Synchronization

Classical problems used to test newly-proposed synchronization
schemes

• Bounded-Buffer Problem

• Dining-Philosophers Problem

• Readers and Writers Problem

• ...

• ...

11

Bounded Buffer Problem (1)

Producer/consumer problem

• There is a set of resource buffers shared by producer and consumer

• Producer inserts resources into the buffer

- Output, disk blocks, memory pages, etc.

• Consumer removes resources from the buffer

• Producer and consumer execute in different rates

- No serialization of one behind the other

- Tasks are independent

12

Bounded Buffer Problem (2)

No synchronization

int count;

struct item buffer[N];
int in, out;

in

out

void produce(data)
{

while (count==N);
buffer[in] = data;
in = (in+1) % N;
count++;

}

Producer

void consume(data)
{

while (count==0);
data = buffer[out];
out = (out+1) % N;
count--;

}

Consumer

19

Dining Philosopher (1)

Dining philosopher problem

• Dijkstra, 1965

• Life of a philosopher

- Repeat forever:

Thinking

Getting hungry

Getting two chopsticks

Eating

21

Dining Philosopher (2)

A simple solution

Semaphore chopstick[N]; // initialized to 1
void philosopher (int i)
{

while (1) {
think ();
wait (chopstick[i]);
wait (chopstick[(i+1) % N];
eat ();
signal (chopstick[i]);
signal (chopstick[(i+1) % N];

}
}

0

1

3

4

2

A

B

C

D

E

23

Problems with Semaphores

Drawbacks

• They are essentially shared global variables

- Can be accessed from anywhere (bad software engineering)

• Used for both critical sections (mutual exclusion) and for
coordination (scheduling)

• No control over their use, no guarantee of proper usage

• Incorrect use of semaphore operations:

- signal (mutex) ... wait (mutex)

- wait (mutex) ... wait (mutex)

- Omitting of wait (mutex) or signal (mutex) (or both)

• Deadlock and starvation

Thus, hard to use and prone to bugs

• Another approach: use programming language support

24

Monitors (1)

Monitor

• A programming language construct that supports controlled access to
shared data

- Synchronization code added by compiler, enforced at runtime

- Allows the safe sharing of an abstract data type among concurrent
processes

• A monitor is a software module that encapsulates

- Shared data structures

- Procedures that operate on the shared data

- Synchronization between concurrent processes that invoke those
procedures

• Monitor protects the data from unstructured access

- Guarantees only access data through procedures, hence in legitimate ways

25

Monitors (2)

Monitor example

• In Java, "synchronized" keyword

class A extends Thread {
static int x;
public void run() {

add1();
sub1();

}
void add1() {

x=x+1;
}
void sub1() {

x=x-1;
}

}

class A extends Thread {
static int x;
public void run() {

add1();
sub1();

}
synchronized void add1() {

x=x+1;
}
synchronized void sub1() {

x=x-1;
}

}

37

Synchronization Mechanisms

Spinlocks

• Busy waiting

H/W support

• TestAndSet

• SWAP

Disabling interrupts

Semaphores

• Binary semaphore = mutex (≅lock)

• Counting semaphore

Monitors

• Language construct for synchronization

