Synchronization I

Jo, Heeseung

I Today's Topics

Synchronization problem

Locks

I Synchronization

Threads cooperate in multithreaded programs
e To share resources, access shared data structures

« Also, to coordinate their execution
For correctness, we have to control this cooperation

« Must assume threads interleave executions arbitrarily and at
different rates

- Scheduling is not under application writers' control
« We control cooperation using synchronization
- Enables us to restrict the interleaving of execution
« (Note) This also applies to processes, not just threads

- And it also applies across machines in a distributed system

I The Classic Example (1)

Withdraw money from a bank account

e Suppose you and your girl(boy) friend share a bank account with a
balance of 1,000,000 won

« What happens if both go to separate ATM machines, and
simultaneously withdraw 100,000 won from the account?

& | 1nt withdraw (account, amount)

' balance = get _balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

I The Classic Example (2)

Interleaved schedules

 Represent the situation by creating a separate thread for each
person to do the withdrawals

« The execution of the two threads can be interleaved, assuming
preemptive scheduling:

Execution
sequence
as seen by
CPU

balance = get _balance (account);
balance = balance - amount;

_;
I Context

balance = get _balance (account);
balance = balance - amount;
put_balance (account, balance);

switch

put_balance (account, balance);

I Synchronization Problem

Problem

« Two concurrent threads (or processes) access a shared resource
without any synchronization

e Creates a race condition:

- The situation where several processes access and manipulate shared data
concurrently

- The result is non-deterministic and depends on timing

 Need mechanisms for controlling access to shared resources
- So that we can reason about the operation of programs

« Synchronization 1s necessary for any shared data structure

- buffers, queues, lists, etc.

Threads using shared data

#include <pthread.h> # gcc ex.c -lpthread
#define MAX_THREAD 20 # ./a.out
Main Thread : 2000
void *threadcount(void *data) { # ./a.out
int *count = (int *)data; Main Thread : 1957
int i;

for (1=0; i1<100; i++) {
*count = *count+1;
}
}
int main(int argc, char **argv) {
pthread_t thread_id[MAX_THREAD];
int 1 = 0;
int count = 0;
for(i = @; 1 < MAX_THREAD; i++) {
pthread create(&thread _id[i], NULL, threadcount, (void *)&count);
}
for(i = @; 1 < MAX_THREAD; i++) {
pthread_join(thread id[i], NULL);
}
printf("Main Thread : %d\n", count);
return 0;

I Threads using shared data

count=count+l could be implemented as

* registerl = count (LOAD R1, MEM _count)
 registerl = registerl + 1 (ADD R1, R1, 1)
« count = registerl (STORE R1, MEM count)

Consider this execution interleaving with "count = 5" initially:

1. T1: registerl = count {registerl = 5}
2. T1: registerl = registerl + 1 {registerl = 6}
3. T2: register2 = count {register2 = 5}
4. T2: register2 = register2 + 1 {register?2 = 6}
5. T1: count = registerl {count = 6}
6. T2: count = register2 {count = 6}

I Sharing Resources

thread 1 stack

'

Between threads

Local variables are not shared
- Refer to data on the stack
- Each thread has its own stack

- Never pass/share/store a pointer to
a local variable on another thread's stack

Global variables are shared

thread 2 stack

'

thread 3 stack

v
T

heap
(dynamically allocated mem)

static data
(data segment)

code
(text segment)

- Stored in static data segment, accessible by any thread

Dynamic objects are shared

- Stored in the heap, shared through the pointers

Between processes

Shared-memory objects, files, etc. are shared

I Critical Sections (1)

Critical sections
« Parts of the program that access shared resources
- Shared files, shared memory(variable), etc.

« Use mutual exclusion to synchronize access to shared resources in
critical sections

- Only one thread at a time can execute in the critical section
- A1l other threads are forced to wait on entry
- When a thread leaves a critical section, another can enter

e Otherwise, critical sections can lead to race conditions

- The final result depends on the sequence of execution of the processes

int withdraw (account, amount)

{
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

I Critical Sections (2)

Requirements

e Mutual exclusion
- At most one thread is in the critical section
 Progress

- If thread T is inside the critical section, T must finish the critical
section within reasonable time

- If thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

« Bounded waiting (no starvation)

- If thread T is waiting on the critical section, then T will eventually
enter the critical section

e Performance

- The overhead of entering and exiting the critical section is small with
respect to the work being done within it

11

I Critical Sections (3)

Mechanisms for building critical sections

* Locks
- Very primitive, minimal semantics, used to build others
 Semaphores
- Basic, easy to get the hang of, hard to program with
* Monitors
- High-level, requires language support, implicit operations
- Easy to program with
e.g. Java "synchronized"
 Messages

- Simple model of communication and synchronization based on (atomic)
transfer of data across a channel

- Direct application to distributed systems

12

Locks

Locks

« A lock is an object (in memory) that provides the following two
operations:

acquire(): wait until lock is free, then grab it

release(): unlock, and wake up any thread waiting in acquire()

e Using locks

Lock is initially free

Call acquire() before entering a critical section, and release() after
leaving it

Between acquire() and release(), the thread holds the lock
acquire() does not return until the caller holds the lock

At most one thread can hold a lock at a time

 Locks can spin (a spinlock) or block (a mutex)

13

I Using Locks

S1
S2
S3

int withdraw (account, amount)

{
acquire (&lock);
balance = get balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);
return balance;

A S1 S2 S3 R

Critical
section

Thread T1 *

Thread T2

S1 S2 S3 R

Implementing Locks (1)

An initial attempt

struct lock { int held = 0; };

void acquire (struct lock *1) {
while (1->held);
l->held = 1;

}

void release (struct lock *1) {

}

int withdraw (account, amount)

{

acquire (&lock);

balance = get _balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);

return balance;

1->held = 0;

The caller "busy-waits",
or spins for locks to be
released, hence
spinlocks

16

I Implementing Locks (1)

An initial attempt

struct lock { int held = 0; }

void acquire (struct lock *1) {
while (1->held);

T2 1->held = 1 :
}
void release (struct lock *1) {
1->held = 0;
}

void acquire (struct lock *1) {
while (1->held);
1->held = 1;

}

void release (struct lock *1) {
L->held = 0;

}

int withdraw (account, amount)

{

acquire (&lock);

balance = get _balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);

return balance;

17

I Implementing Locks (2)

Problem
« Implementation of locks has a critical section, too!
- The acquire/release must be atomic
- A recursion, huh?
Atomic operation
« Executes as though it could not be interrupted

« Code that executes "all or nothing"

18

I Implementing Locks (3)

Solutions
e Software-only algorithms
- Dekker's algorithm (1962)
- Peterson's algorithm (1981)
- Lamport's Bakery algorithm for more than two processes (1974)
« Hardware atomic instructions
- Test-and-set, compare-and-swap, etc.
« Disable/reenable interrupts

- To prevent context switches

19

Software-only Algorithms

Initial algorithm
e Mutual exclusion?
 Progress?

e Bounded waiting?

Thread 0

acquire(@) | acquire(1)

do C.S.
release(0)

do C.S.

int interested[2];

interested[@]=FALSE; interested[1]=FALSE;

void acquire (int process) {
int other = 1 - process;
interested[process] = TRUE;
while (interested[other]);

}

void release (int process) {
interested[process] = FALSE;
}

Thread 1

release(1)

void acquire (int process) {
int other = 1 - process;
interested[process] = TRUE;
while (interested[other]);

}

void release (int process) {
interested[process] = FALSE;

}

20

Peterson's Algorithm

Solves the critical section problem
for two threads/processes

Thread 0 Thread 1

acquire(@) | acquire(1)

int turn;
int interested[2];
interested[@]=FALSE; interested[1]=FALSE;

do C.S. do C.S.
release(@) release(1)

void acquire (int process) { void acquire (int process) {

int other = 1 — process;

interested[process] = TRUE;

turn = other;

while (interested[other] &&
turn == other);

} }

void release (int process) { void release (int process) {

interested[process] = FALSE;
} }

int other = 1 — process;

interested[process] = TRUE;

turn = other;

while (interested[other] &&
turn == other);

interested[process] = FALSE;

21

I Atomic Instructions (1)

Test-and-Set
e Mostly supported by H/W

// bts reg/mem, reg

int TestAndSet (int *v) {
int rv = *v;
xv = 1;
return rv;

> Atomic

Using Test-and-Set instruction

void struct lock { int value = 0; }

void acquire (struct lock *1) {
while (TestAndSet (&l->value));

}

void release (struct lock *1) {
1->value = 0;

}

24

I Atomic Instructions (2)

Swap
e Mostly supported by H/W

// cmpxchg reg, reg/mem

void Swap (int *v1, int *v2) {
int temp = *v1;
xv] = *v2;
xv2 = temp;

> Atomic

Using Swap instruction

void struct lock { int value = 0; }
void acquire (struct lock *1) {
int key = 1;
while (key == 1) Swap(&l->value, &key);
}
void release (struct lock *1) {
1->value = 0;

}

25

I Problems with Spinlocks

Spinlocks

e Horribly wasteful!
- CPU cycle is wasted
- The longer the critical section, the longer the spin

- Lock holder can be interrupted through involuntary context switch

« Only want to use spinlock as primitives to build higher-level
synchronization constructs

27

I Disabling Interrupts (1)

Implementing locks by disabling interrupts

void acquire (struct lock *1) {
cli(); // local _irq _disable(), disable interrupts;
ks
void release (struct lock *1) {
sti(); // local _irqg _enable(), enable interrupts;
}

« Disabling interrupts
- Blocks notification of external events
- No context switch (e.g., timer)

e« Can two threads disable interrupts simultaneously?

28

I Disabling Interrupts (2)

What's wrong?
« Only available to kernel
- If OS support these as system calls ?
« Insufficient on a multiprocessor
- Back to atomic instructions
« What if the critical section is long?

- Can miss or delay important events
(e.g., timer, I/0)

Like spinlocks, only use to implement higher-level synchronization
primitives

29

I Summary

Implementing locks
e Software-only algorithms
e Hardware atomic instructions

« Disable/reenable interrupts

Spinlocks and disabling interrupts are primitive synchronization
mechanisms

« They are used to build higher-level synchronization constructs

30

