
Synchronization I

Jo, Heeseung

2

Today's Topics

Synchronization problem

Locks

3

Synchronization

Threads cooperate in multithreaded programs

• To share resources, access shared data structures

• Also, to coordinate their execution

For correctness, we have to control this cooperation

• Must assume threads interleave executions arbitrarily and at
different rates

- Scheduling is not under application writers' control

• We control cooperation using synchronization

- Enables us to restrict the interleaving of execution

• (Note) This also applies to processes, not just threads

- And it also applies across machines in a distributed system

4

The Classic Example (1)

Withdraw money from a bank account

• Suppose you and your girl(boy) friend share a bank account with a
balance of 1,000,000 won

• What happens if both go to separate ATM machines, and
simultaneously withdraw 100,000 won from the account?

int withdraw (account, amount)
{

balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

}

5

The Classic Example (2)

Interleaved schedules

• Represent the situation by creating a separate thread for each
person to do the withdrawals

• The execution of the two threads can be interleaved, assuming
preemptive scheduling:

balance = get_balance (account);
balance = balance - amount;

balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);

put_balance (account, balance);

Context
switch

Context
switch

Execution
sequence
as seen by

CPU

6

Synchronization Problem

Problem

• Two concurrent threads (or processes) access a shared resource
without any synchronization

• Creates a race condition:

- The situation where several processes access and manipulate shared data
concurrently

- The result is non-deterministic and depends on timing

• Need mechanisms for controlling access to shared resources

- So that we can reason about the operation of programs

• Synchronization is necessary for any shared data structure

- buffers, queues, lists, etc.

7

Threads using shared data

#include <pthread.h>
#define MAX_THREAD 20

void *threadcount(void *data) {
int *count = (int *)data;
int i;
for (i=0; i<100; i++) {

*count = *count+1;
}

}
int main(int argc, char **argv) {

pthread_t thread_id[MAX_THREAD];
int i = 0;
int count = 0;
for(i = 0; i < MAX_THREAD; i++) {

pthread_create(&thread_id[i], NULL, threadcount, (void *)&count);
}
for(i = 0; i < MAX_THREAD; i++) {

pthread_join(thread_id[i], NULL);
}
printf("Main Thread : %d\n", count);
return 0;

}

gcc ex.c -lpthread
./a.out
Main Thread : 2000
./a.out
Main Thread : 1957

8

Threads using shared data

count=count+1 could be implemented as

• register1 = count (LOAD R1, MEM_count)

• register1 = register1 + 1 (ADD R1, R1, 1)

• count = register1 (STORE R1, MEM_count)

Consider this execution interleaving with "count = 5" initially:

1. T1: register1 = count {register1 = 5}

2. T1: register1 = register1 + 1 {register1 = 6}

3. T2: register2 = count {register2 = 5}

4. T2: register2 = register2 + 1 {register2 = 6}

5. T1: count = register1 {count = 6}

6. T2: count = register2 {count = 6}

9

Sharing Resources

Between threads

• Local variables are not shared

- Refer to data on the stack

- Each thread has its own stack

- Never pass/share/store a pointer to
a local variable on another thread's stack

• Global variables are shared

- Stored in static data segment, accessible by any thread

• Dynamic objects are shared

- Stored in the heap, shared through the pointers

Between processes

• Shared-memory objects, files, etc. are shared

code

(text segment)

static data

(data segment)

heap

(dynamically allocated mem)

thread 1 stack

thread 2 stack

thread 3 stack

10

Critical Sections (1)

Critical sections

• Parts of the program that access shared resources

- Shared files, shared memory(variable), etc.

• Use mutual exclusion to synchronize access to shared resources in
critical sections

- Only one thread at a time can execute in the critical section

- All other threads are forced to wait on entry

- When a thread leaves a critical section, another can enter

• Otherwise, critical sections can lead to race conditions

- The final result depends on the sequence of execution of the processes

int withdraw (account, amount)
{

balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
return balance;

}

11

Critical Sections (2)

Requirements

• Mutual exclusion

- At most one thread is in the critical section

• Progress

- If thread T is inside the critical section, T must finish the critical
section within reasonable time

- If thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

• Bounded waiting (no starvation)

- If thread T is waiting on the critical section, then T will eventually
enter the critical section

• Performance

- The overhead of entering and exiting the critical section is small with
respect to the work being done within it

12

Critical Sections (3)

Mechanisms for building critical sections

• Locks

- Very primitive, minimal semantics, used to build others

• Semaphores

- Basic, easy to get the hang of, hard to program with

• Monitors

- High-level, requires language support, implicit operations

- Easy to program with

· e.g. Java "synchronized"

• Messages

- Simple model of communication and synchronization based on (atomic)
transfer of data across a channel

- Direct application to distributed systems

13

Locks

Locks

• A lock is an object (in memory) that provides the following two
operations:

- acquire(): wait until lock is free, then grab it

- release(): unlock, and wake up any thread waiting in acquire()

• Using locks

- Lock is initially free

- Call acquire() before entering a critical section, and release() after
leaving it

- Between acquire() and release(), the thread holds the lock

- acquire() does not return until the caller holds the lock

- At most one thread can hold a lock at a time

• Locks can spin (a spinlock) or block (a mutex)

15

Using Locks

int withdraw (account, amount)
{

acquire (&lock);
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);
return balance;

}

Critical
section

A
S1
S2
S3
R

Thread T1

Thread T2

A S1 S2 S3 R

A S1 S2 S3 R

16

An initial attempt

struct lock { int held = 0; };

void acquire (struct lock *l) {
while (l->held);
l->held = 1;

}
void release (struct lock *l) {

l->held = 0;
}

Implementing Locks (1)

The caller "busy-waits",
or spins for locks to be

released, hence
spinlocks

int withdraw (account, amount)
{

acquire (&lock);
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);
return balance;

}

17

Implementing Locks (1)

An initial attempt

• Does this work?

struct lock { int held = 0; }

void acquire (struct lock *l) {
while (l->held);
l->held = 1;

}
void release (struct lock *l) {

l->held = 0;
}

int withdraw (account, amount)
{

acquire (&lock);
balance = get_balance (account);
balance = balance - amount;
put_balance (account, balance);
release (&lock);
return balance;

}

void acquire (struct lock *l) {
while (l->held);
l->held = 1;

}
void release (struct lock *l) {

l->held = 0;
}

18

Implementing Locks (2)

Problem

• Implementation of locks has a critical section, too!

- The acquire/release must be atomic

- A recursion, huh?

Atomic operation

• Executes as though it could not be interrupted

• Code that executes "all or nothing"

19

Implementing Locks (3)

Solutions

• Software-only algorithms

- Dekker's algorithm (1962)

- Peterson's algorithm (1981)

- Lamport's Bakery algorithm for more than two processes (1974)

• Hardware atomic instructions

- Test-and-set, compare-and-swap, etc.

• Disable/reenable interrupts

- To prevent context switches

20

Software-only Algorithms

Initial algorithm

• Mutual exclusion?

• Progress?

• Bounded waiting?

int interested[2];
interested[0]=FALSE; interested[1]=FALSE;

void acquire (int process) {
int other = 1 - process;
interested[process] = TRUE;
while (interested[other]);

}

void release (int process) {
interested[process] = FALSE;

}

Thread 0
...
acquire(0)
do C.S.
release(0)

Thread 1
...
acquire(1)
do C.S.
release(1)

void acquire (int process) {
int other = 1 - process;
interested[process] = TRUE;
while (interested[other]);

}

void release (int process) {
interested[process] = FALSE;

}

21

Peterson's Algorithm

Solves the critical section problem
for two threads/processes

int turn;
int interested[2];
interested[0]=FALSE; interested[1]=FALSE;

void acquire (int process) {
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (interested[other] &&

turn == other);
}

void release (int process) {
interested[process] = FALSE;

}

void acquire (int process) {
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (interested[other] &&

turn == other);
}

void release (int process) {
interested[process] = FALSE;

}

Thread 0
...
acquire(0)
do C.S.
release(0)

Thread 1
...
acquire(1)
do C.S.
release(1)

24

Atomic Instructions (1)

Test-and-Set

• Mostly supported by H/W

Using Test-and-Set instruction

// bts reg/mem, reg
int TestAndSet (int *v) {

int rv = *v;
*v = 1;
return rv;

}

void struct lock { int value = 0; }

void acquire (struct lock *l) {
while (TestAndSet (&l->value));

}
void release (struct lock *l) {

l->value = 0;
}

Atomic

25

Atomic Instructions (2)

Swap

• Mostly supported by H/W

Using Swap instruction

// cmpxchg reg, reg/mem
void Swap (int *v1, int *v2) {

int temp = *v1;
*v1 = *v2;
*v2 = temp;

}

void struct lock { int value = 0; }
void acquire (struct lock *l) {

int key = 1;
while (key == 1) Swap(&l->value, &key);

}
void release (struct lock *l) {

l->value = 0;
}

Atomic

27

Problems with Spinlocks

Spinlocks

• Horribly wasteful!

- CPU cycle is wasted

- The longer the critical section, the longer the spin

- Lock holder can be interrupted through involuntary context switch

• Only want to use spinlock as primitives to build higher-level
synchronization constructs

28

Disabling Interrupts (1)

Implementing locks by disabling interrupts

• Disabling interrupts

- Blocks notification of external events

- No context switch (e.g., timer)

• Can two threads disable interrupts simultaneously?

void acquire (struct lock *l) {
cli(); // local_irq_disable(), disable interrupts;

}
void release (struct lock *l) {

sti(); // local_irq_enable(), enable interrupts;
}

29

Disabling Interrupts (2)

What's wrong?

• Only available to kernel

- If OS support these as system calls ?

• Insufficient on a multiprocessor

- Back to atomic instructions

• What if the critical section is long?

- Can miss or delay important events
(e.g., timer, I/O)

Like spinlocks, only use to implement higher-level synchronization
primitives

30

Summary

Implementing locks

• Software-only algorithms

• Hardware atomic instructions

• Disable/reenable interrupts

Spinlocks and disabling interrupts are primitive synchronization
mechanisms

• They are used to build higher-level synchronization constructs

