
Architectural Support 
for Operating Systems

Jo, Heeseung



2

Today's Topics

Basic structure of OS

Basic computer system architecture

Architectural support for OS



3

OS Internals (1)

Kernel

Arch-dependent kernel code

System Call Interface

Hardware Platform

C Library (libc)

User Application

User space

Kernel space



4

OS Internals (2)

Hardware

System Call Interface

shell
shell

ls
ps

Hardware Control (Interrupt handling, etc.)

File System
Management

I/O Management
(device drivers)

Memory
Management

Process
Management

Protection

Kernel
space

User
space trap

scheduler

IPC

synchronization



5

Computer Systems (1) 

Computer system organization



6

Computer Systems (2)

Characteristics

• I/O devices and CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• I/O is data movements between main memory and the local buffer of 
controller

• CPU issues specific commands to I/O devices

• CPU should be able to know whether the issued command has been 
completed or not 



7

OS and Architecture

Mutual interaction

• The functionality of an OS is limited by architectural features

- Multiprocessing on DOS/8086?

• The structure of an OS can be simplified by architectural support

- Interrupt, DMA, synchronization, Intel-VT/AMD-V, etc.

• Most proprietary OS's were developed with the certain architecture 
in mind

- SunOS/Solaris for SPARC architecture

- IBM AIX for Power/PowerPC architecture

- HP-UX for PA-RISC architecture

- ...



8

Interrupts (1)

Interrupts

• Generated by hardware devices

- Triggered by a signal in INTR or 
NMI pins (x86)

Exceptions

• Generated by software executing 
instructions

- INT instruction in x86

• Exception handling is same as interrupt handling

Hardware

trap

Interrupts

Exceptions



9

Interrupts (2)

How does the kernel notice an I/O has finished? 

• Polling

• Hardware interrupt



10

Interrupts (3)

Interrupt handling

• Preserves the state of the CPU 

- In a fixed location

- In a location indexed by the device
number

- On the system stack

• Determines the type

- Vectored interrupt system

• Transfers control to the interrupt 
service routine (ISR) or interrupt 
handler



11

Exceptions (1)

Interrupts

• Generated by hardware devices

- Triggered by a signal in INTR or 
NMI pins (x86)

Exceptions

• Generated by software executing 
instructions

- INT instruction in x86

• Exception handling is same as interrupt handling

Hardware

trap

Interrupts

Exceptions



12

Exceptions (2)

Further classification of exceptions

• Traps

- Intentional

- System calls, breakpoint traps, special instructions, ...

- Return control to "next" instruction

• Faults

- Unintentional but possibly recoverable

- Page faults (recoverable), protection faults, ...

- Either re-execute faulting ("current") instruction or abort 

• Aborts

- Unintentional and unrecoverable

- Parity error, machine check, ...

- Abort the current program



13

Exceptions (3)

System calls

• Programming interface 
to the services 
provided by OS

• e.g., system call 
sequence to copy the 
contents of one file 
to another

cp a.txt b.txt



14

Exceptions (4)

Important system calls (POSIX & Win32)

Create a new process

Wait for a process to exit

CreateProcess = fork + execve

Terminate execution

Send a signal

CreateProcess

WaitForSingleObject

(none)

ExitProcess

(none)

fork

waitpid

execve

exit

kill

Process

Management

Create a file or open an existing file

Close a file

Read data from a file

Write data to a file

Move the file pointer

Get various file attributes

Change the file access permission

CreateFile

CloseHandle

ReadFile

WriteFile

SetFilePointer

GetFileAttributesEx

(none)

open

close

read

write

lseek

stat

chmod

File

Management

Create a new directory

Remove an empty directory

Make a link to a file

Destroy an existing file

Mount a file system

Unmount a file system

Change the curent working directory

CreateDirectory

RemoveDirectory

(none)

DeleteFile

(none)

(none)

SetCurrentDirectory

mkdir

rmdir

link

unlink

mount

umount

chdir

File System

Management



15

Exceptions (5)

Implementing system calls

System call table



16

Exceptions (6)

Implementing system calls (cont'd)

count = read (fd, buffer, nbytes);



17

Signals (1)

Signals

• Standardized messages sent to a running program (process)

• To trigger specific behavior, such as quitting or error handling

• A limited form of inter-process communication (IPC)

• Asynchronous

Common uses

• To interrupt, suspend, terminate or kill a process or thread



18

Signals (2)

When a signal is sent

• The operating system interrupts the target process' normal flow of 
execution to deliver the signal

• If the process has previously registered a signal handler, that 
routine is executed

• Otherwise, the default signal handler is executed

Signals vs. interrupts

• Interrupts are mediated by the
hardware and handled by the kernel

• Signals are mediated by the kernel 
and handled by individual processes

Hardware

trap

Interrupts

Exceptions

App.

Signals



19

DMA (1)

Data transfer modes in I/O

• Programmed I/O (PIO)

- CPU is involved in moving data between I/O devices and memory

- By special I/O instructions vs. by memory-mapped I/O

• DMA (Direct Memory Access)

- Used for high-speed I/O devices able to transmit information at close to 
memory speeds

- Device controller transfers blocks of data from buffer storage directly 
to main memory 

· Without CPU intervention

- Only an interrupt is generated per block



20

DMA (2)

Processing I/O requests



21

Timers 

How does the OS take control of CPU from the running programs?

• Use a hardware timer that generates a periodic interrupt

• The timer interrupt transfers control back to OS

• The OS preloads the timer with a time to interrupt

- 10ms for Linux 2.4, 1ms for Linux 2.6

- Dynamic changing for current Linux

- (cf.) time slice

• The timer is privileged

- Only the OS can load it 



22

Protected Instructions

Protected or privileged instructions

• Direct I/O access

- Use privileged instructions or memory-mapping

• Memory state management

- Page table updates, page table pointers

- TLB loads, etc.

• Setting special "mode bits"



23

OS Protection (1)

How does the processor know if a protected instruction should be 
executed?

• The architecture must support 
at least two modes of operation: 
kernel and user mode

- 4 privilege levels in IA-32: 
Ring 0 > 1 > 2 > 3

• Mode is set by a status bit in 
a protected processor register

- User programs in user mode, 
OS in kernel mode

- Current Privilege Level (CPL) in IA-32: CS register

• Protected instructions can only be executed in the kernel mode



24

OS Protection (2)

Crossing protection boundaries

• User programs must call an OS to do something privileged

- OS defines a sequence of system calls (system call table)

• There must be a system call instruction that:

- Causes an exception, which invokes a kernel handler

- Passes a parameter indicating which system call to invoke

- Saves caller's state (registers, mode bits) so they can be restored

- OS must verify caller's parameters (e.g. pointers)

- Must provide a way to return to user mode when done



25

OS Protection (3)

Making a system call

• System call changes mode to kernel

• Return from system call resets it to user



26

Memory Protection (1)

Requirements

• OS must protect user programs from each other

- Malicious users

• OS must also protect itself from user programs

- Integrity and security



27

Memory Protection (2)

Simplest scheme

• Use base and limit registers

• Base and limit registers are loaded by OS before starting a program

Prog A

Prog B

Prog C

base reg

limit reg



28

Memory Protection (3)

MMU (Memory Management Unit)

• Memory management hardware provides more sophisticated memory 
protection mechanisms

- Base and limit registers

- Page table pointers, page protection, TLBs

- Virtual memory

- Segmentation

• Manipulation of memory management hardware are protected 
(privileged) operations



29

Synchronization

Problems

• Interrupt can occur at any time and may interfere with the 
interrupted code

• OS must be able to synchronize concurrent processes

Synchronization 

• Turn off/on interrupts

• Use a special atomic instructions

- read-modify-write (e.g., INC, DEC)

- test-and-set

- LOCK prefix in IA32

- LL (Load Locked) & SC (Store Conditional) in MIPS


