
1

Virtual Memory

Use main memory as a "cache" for secondary (disk) storage

• Managed jointly by CPU hardware and the operating system (OS)

Programs share main memory

• Each gets a private virtual address space holding its frequently 
used code and data

• Protected from other programs

CPU and OS translate virtual addresses to physical addresses

• VM "block" is called a page

• VM translation "miss" is called a page fault

Virtual address <-> Physical address

(App. view)         (Managed by kernel)

§5
.
4 
V
ir
t
ua
l
 M
e
mo
r
y



2

Virtual Memory

Example
#include <stdio.h>

int n = 0;

int main ()
{

printf ("&n = 0x%08x\n", &n);
}

% ./a.out
&n = 0x08049508



3

Process in memory

program

code

data

kernel virtual memory
(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0xffffffff

stack pointer



4

Paging Introduction

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Process
A

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0 Page
table A

4KB

User's view
- Contiguous
- Large address space

User space Kernel space



5

Paging (1)

Paging

• Permits the physical address space of a process to be noncontiguous

• Divide physical memory into fixed-sized blocks called frames

• Divide logical memory into blocks of same size called pages

- Page (or frame) size is power of 2 (typically, 512B - 8KB)

- Mostly use 4K in modern OS

• Set up a page table to translate virtual to physical addresses



6

Paging (2)

Frame 6

Frame 7

Frame 8

Frame 9

Frame 10

Frame 11

Frame 0

Frame 1

Frame 2

Frame 3

Frame 4

Frame 5

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5Process
B

Process
A

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0 Page
table A

Page
table B

User space Kernel space



7

Translation Using a Page Table



8

Page Tables

Stores placement information

• Array of page table entries, indexed by virtual page number

• Page table register in CPU points to page table in physical memory

If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

If page is not present

• PTE can refer to location in swap space on disk



9

Mapping Pages to Storage



10

Address Translation

Fixed-size pages (e.g., 4K)



11

Page Fault Penalty

Page faults

• Referencing a virtual address in an evicted page

On page fault, the page must be fetched from disk

• Takes millions of clock cycles

• Handled by OS code

Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms



12

Page Fault Handler

Use faulting virtual address to find PTE

Locate page on disk

Choose page to replace

• If dirty, write to disk first

Read page into memory and update page table

Make process runnable again

• Restart from 
faulting instruction



13

Replacement and Writes

To reduce page fault rate, prefer least-recently used (LRU)
replacement

• Reference bit (aka use bit) in PTE set to 1 on access to page

• Periodically cleared to 0 by OS

• A page with reference bit = 0 has not been used recently

Disk writes take millions of cycles

• Write through is impractical

• Use write-back



14

Fast Translation Using a TLB

Address translation would appear to require extra memory 
references

• One to access the PTE

• Then the actual memory access

But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100 cycles for miss, 
0.01%-1% miss rate

• Misses could be handled by hardware or software



15

Fast Translation Using a TLB



16

TLB Misses

If page is in memory

• Load the PTE from memory and retry

• Could be handled in hardware

- Can get complex for more complicated page table structures

• Or in software

- Raise a special exception, with optimized handler

If page is not in memory (page fault)

• OS handles fetching the page and updating the page table

• Then restart the faulting instruction



17

TLB Miss Handler

TLB miss indicates

• Page present, but PTE not in TLB

• Page not present

Handler copies PTE from memory to TLB

• Then restarts instruction

• If page not present, page fault will occur



18

TLB and Cache Interaction

If cache tag uses physical
address

• Need to translate 
before cache lookup

Alternative: use virtual 
address tag

• Complications due to 
aliasing

- Different virtual 
addresses for shared 
physical address



19

Processing Read/Write



20

Memory Protection

Different tasks can share parts of their virtual address spaces

• But need to protect against errant access

• Requires OS assistance

Hardware support for OS protection

• Privileged supervisor mode (aka kernel mode)

- Can perform privileged instructions

• Page tables and other state information only accessible in 
supervisor (kernel) mode



21

The Memory Hierarchy

Common principles at all levels of the memory hierarchy

• Based on notions of caching

Considerations at each level in the hierarchy

• Block placement

• Finding a block

• Replacement on a miss

• Write policy

§5
.
5 
A
 C
o
mm
o
n 
F
ra
m
ew
o
rk
 
fo
r
 M
e
mo
r
y 
H
ie
r
ar
c
hi
e
s



22

Block Placement

Determined by associativity

• Direct mapped (1-way associative)

- One choice for placement

• n-way set associative

- n choices within a set

• Fully associative

- Any location

Higher associativity reduces miss rate

• Increases complexity, cost



23

Finding a Block

Hardware caches

• Reduce comparisons to reduce cost

Virtual memory

• Full table lookup makes full associativity feasible

• Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set 
associative

Set index

Search within the set

n

Fully associative Search all entries #entries

Full lookup table 0



24

Replacement

Choice of entry to replace on a miss

• Least recently used (LRU)

- Complex and costly hardware for high associativity

• Random

- Close to LRU, easier to implement

Virtual memory

• LRU approximation with hardware support



25

Write Policy

Write-through

• Update both upper and lower levels

• Simplifies replacement, but may require write buffer

Write-back

• Update upper level only

• Update lower level when block is replaced

• Need to keep more state

Virtual memory

• Only write-back is feasible, given disk write latency 



26

Sources of Misses

Compulsory misses (aka cold start misses)

• First access to a block

Capacity misses

• Due to finite cache size

• A replaced block is later accessed again

Conflict misses (aka collision misses)

• In a non-fully associative cache

• Due to competition for entries in a set

• Would not occur in a fully associative cache of the same total size



27

Cache Design Trade-offs

Design change Effect on miss rate Negative performance 
effect

Increase cache size Decrease capacity 
misses

May increase access 
time

Increase associativity Decrease conflict 
misses

May increase access 
time

Increase block size Decrease compulsory 
misses

Increases miss 
penalty. 

For very large block 
size, may increase 
miss rate due to 
pollution.



28

Cache Control

Example cache characteristics

• Direct-mapped, write-back, write allocate

• Block size: 4 words (16 bytes)

• Cache size: 16 KB (1024 blocks)

• 32-bit byte addresses

• Valid bit and dirty bit per block

• Blocking cache

- CPU waits until access is complete

§5
.
7 

U
s
i
n
g
 
a
 
F
i
n
i
t
e
 
S
t
a
t
e
 
M
a
c
h
i
n
e
 t

o
 C

o
nt

r
ol

 
A 

S
im

p
le

 
Ca

c
he

Tag Index Offset

034131431

4 bits10 bits18 bits



29

Interface Signals

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles 
per access



30

Cache Controller FSM



31

Cache Coherence Problem

Suppose two CPU cores share a physical address space

• Write-through caches

e.g.) Multi-core processor, Multi-core multiprocessor

§5
.
8 

P
a
r
a
l
l
e
l
i
s
m
 
a
n
d
 
M
e
m
o
r
y
 
H
i
e
r
a
rc

h
ie

s
: 

C
ac

h
e 

C
oh

e
re

n
ce

Time 
step

Event CPU A's 
cache

CPU B's 
cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1



32

Cache Coherence Problem



33

Coherence Defined

Informally: Reads return most recently written value

Formally:

• P1 writes X; P1 reads X (no intervening writes)
 read returns written value

• P1 writes X; P2 reads X (sufficiently later)
 read returns written value

• P1 writes X; P2 writes X
 all processors see writes in the same order

- End up with the same final value for X

Cache Coherence Protocols

• Snooping protocols

- Each cache monitors bus reads/writes

• Directory-based protocols

- Caches and memory record sharing status of blocks in a directory



34

Snooping Protocols

Cache gets exclusive access to a block when it is to be written

• Broadcasts an invalidate message on the bus

• Subsequent read in another cache misses

- Owning cache supplies updated value

CPU activity Bus activity CPU A’s 
cache

CPU B’s 
cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 1

CPU B read X Cache miss for X 1 1 1



38

Multilevel On-Chip Caches
§5
.
10
 
Re
a
l 
S
tu
f
f:
 
Th
e
 A
M
D 
O
pt
e
ro
n
 X
4
 a
n
d 
I
nt
e
l 
N
eh
a
le
m

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor



39

2-Level TLB Organization

Intel Nehalem AMD Opteron X4

Virtual addr 48 bits 48 bits

Physical 
addr

44 bits 48 bits

Page size 4KB, 2/4MB 4KB, 2/4MB

L1 TLB
(per core)

L1 I-TLB: 128 entries for 
small pages, 7 per thread 
(2×) for large pages

L1 D-TLB: 64 entries for 
small pages, 32 for large 
pages

Both 4-way, LRU replacement

L1 I-TLB: 48 entries

L1 D-TLB: 48 entries

Both fully associative, 
LRU replacement

L2 TLB
(per core)

Single L2 TLB: 512 entries

4-way, LRU replacement

L2 I-TLB: 512 entries

L2 D-TLB: 512 entries

Both 4-way, round-robin 
LRU

TLB misses Handled in hardware Handled in hardware



40

3-Level Cache Organization

Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte 
blocks, 4-way, approx LRU 
replacement, hit time n/a

L1 D-cache: 32KB, 64-byte 
blocks, 8-way, approx LRU 
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, hit time 3 
cycles

L1 D-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, write-
back/allocate, hit time 9 
cycles

L2 unified 
cache
(per core)

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, 
write-back/allocate, hit 
time n/a

512KB, 64-byte blocks, 16-
way, approx LRU replacement, 
write-back/allocate, hit 
time n/a

L3 unified 
cache 
(shared)

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 
replace block shared by 
fewest cores, write-
back/allocate, hit time 32 
cycles

n/a: data not available



44

Concluding Remarks

Fast memories are small, large memories are slow

• We really want fast, large memories 

• Caching gives this illusion ☺

Principle of locality

• Programs use a small part of their memory space frequently

Memory hierarchy

• L1 cache  L2 cache  ...  DRAM memory  ......  disk

Memory system design is critical for multiprocessors

§5
.
12
 
Co
n
cl
u
di
n
g 
R
em
a
rk
s


