ARITHMETIC FOR COMPUTERS

Jo, Heeseung

I Arithmetic for Computers

Operations on integers
« Addition and subtraction
e Multiplication and division
e Dealing with overflow
Floating-point real numbers

* Representation and operations

I Integer Addition

Example: 7 + 6

SiHHNRN

0 (0) 0 0 1 (1) 1 (1) 0

Overflow if result out of range
« Adding +ve and -ve operands, no overflow
« Adding two +ve operands
- Overflow if result sign is 1
« Adding two -ve operands

- Overflow if result sign is 0

I Integer Subtraction

Add negation of second operand
Example: 7 - 6 = 7 + (-6)

+/: 0000 0000 .. 0000 0111
-6: 1111 1111 .. 1111 1010
+1: 0000 0000 .. 0000 0001

Overflow if result out of range
 Subtracting two +ve or two -ve operands, no overflow
e Subtracting +ve from -ve operand
- Overflow if result sign is 0
e Subtracting -ve from +ve operand

- Overflow if result sign is 1

I Dealing with Overflow

Some languages (e.g., C) ignore overflow

« Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception
e Use MIPS add, addi, sub instructions
« On overflow, invoke exception handler

- Save PC in exception program counter (EPC) register

- Jump to predefined handler address

mfc@ (move from coprocessor reg) instruction can retrieve EPC value, to
return after corrective action

I Multiplication

Start with long-multiplication approach

multiplicand \

— 1000
multiplier 7,1001
1000

0000

0000

1000
elllles s —— 1001000

-

Multiplicand

Shift left

.

Multiplier

164 bits
\ 64-bit ALU

Product

Write

Length of product is the
sum of operand lengths

64 bits

Shift right

32 bits

Control test) I

I Multiplication Hardware

‘ Start)

il
-

Multiplier0 = 1 1. Test Multiplier0 = 0

W
Y

1a. Add multiplicand to product and
place the result in Product register

|

2. Shift the Multiplicand register left 1 bit

l

3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

-
Multiplicand
Shift left |-
64 bits
4 Y
R
\/ Al
. Multiplier
64-bit ALU Shift right |
32 bits
4
Product _ Control test
ker’[e
64 bits

32nd repetition?

Yes: 32 repetitions

Initially @

multiplicand \

— 1000
multiplier ?10@1

SR T 1001000

I Optimized Multiplier

Perform steps in parallel: add/shift

_h.

Multiplier

Multiplicand

Shift right

_l 132 bits

multiplicand \

mutLtctiptlier
32-bit ALU x_"1001
1000
0000
/Shift right 0000
Product Wiite 1000
e product [1001000
One cycle per partial-product addition R
Shift left
64 bits
64-bit ALU Shift right
¥'_/ 32 bits

Product

Control test

Write

64 bits

I Division

Check for @ divisor .
Long division approach -

e If divisor = dividend bits 1001
- 1 bit in quotient, subtract 100@)1001@10

e Otherwise / —1@@?0

- @ bit in quotient, bring down

next dividend bit 101

: e 1010
Signed division _1000
« Divide using absolute values - |/ 10

e Adjust sign of quotient and

remainder as required n-bit operands yield r-bit

quotient and remainder

I Floating Point

Representation for non-integral numbers

e Including very small and very large numbers
Scientific notation

e +0.002 x 10 —
e +987.02 x 109 —

not normalized

In binary

o F1.XXXXXXX, x 2Y¥¥Y

Types float and double in C

12

I Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of representations
« Portability issues for scientific code

Now almost universally adopted

Two representations
e Single precision (32-bit)
 Double precision (64-bit)

13

§ IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)5 < (1_|_ Fraction) % 2(Exponent—Bias)

S: sign bit (@ = non-negative, 1 = negative)
Normalize significand: 1.0 =< |significand] < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

e Significand is Fraction with the "1." restored
Exponent: excess representation: actual exponent + Bias

« Ensures exponent 1s unsigned

e Single: Bias = 127; Double: Bias = 1203

I Floating-Point Example

Represent -0.75

.+ -0.75 = (-1)! x 1.1, x 21

Exponent

Fraction

- S=1
- Fraction = 1000..00,
« Exponent = -1 + Bias
- Single: -1 + 127 = 126 = 01111110,
- Double: -1 + 1023 = 1022 = 01111111110,
Single: 1011111101000..00

Double: 1011111111101000..00

15

I Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

« S=1
- Fraction = 01000..00,
* Exponent = 10000001, = 129

X = (_1)1 x (1 + @12) x 2(129 - 127)
= (-1) x 1.25 x 22
= =-5.0

S

Exponent

Fraction

I Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value S

Exponent

Fraction

 Exponent: 00000001
— actual exponent = 1 - 127 = -126

 Fraction: 000..00 — significand = 1.0
e 1.0 x 27126 = +1.2 x 1038
Largest value

« exponent: 11111110
= actual exponent = 254 - 127 = +127

 Fraction: 111..11 = significand = 2.0
e 12.0 x 2*127 = £3.4 x 10*3#

I Double-Precision Range

Exponents 0000..00 and 1111..11 reserved

Smallest value S

Exponent

Fraction

 Exponent: 00000000001
= actual exponent = 1 - 1023 = -1022

 Fraction: 000..00 — significand = 1.0
e 11.0 x 271022 = 42,2 x 107308

Largest value
« Exponent: 11111111110

= actual exponent = 2046 - 1023 = +1023

 Fraction: 111..11 = significand = 2.0

e +2.0 x 2+1023 = +71.8 x 10+308

I Floating-Point Precision

Relative precision
« all fraction bits are significant

e Single: approx 2-23

- Equivalent to 23 x log,2 = 23 x 0.3
e Double: approx 222
- Equivalent to 52 x log,;2 = 52 x 0.3

R

R

6 decimal digits of precision

16 decimal digits of precision

19

I FP Adder Hardware

Much more complex than integer adder

Doing it in one clock cycle would take too long
e Much longer than integer operations

« Slower clock would penalize all instructions

FP adder usually takes several cycles

« Can be pipelined [san [sporent

v '

Small ALU

!

Exponent
difference

Compare
exponents

Shift smaller
number right

Add

22

I FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

FP arithmetic hardware usually does

e Addition, subtraction, multiplication, division, reciprocal,
square-root

« FP < integer conversion
Operations usually takes several cycles

« Can be pipelined

23

I Interpretation of Data

Bits have no inherent meaning
 Interpretation depends on the instructions applied
e add vs. addu

Computer representations of numbers
« Finite range and precision

 Need to account for this in programs

24

I Right Shift and Division

Left shift by i places multiplies an integer by 21

Right shift divides by 21?
« Only for unsigned integers
For signed integers
e Arithmetic right shift: replicate the sign bit
- e.g., -5/ 4
- 11111011, >> 2 = 11111110, = -2

- Rounds toward -infinity (We want to round to 0)
 Logical right shift: fill 0
- c.f. 11111011, >>> 2 = 00111110, = +62 (in Java)

25

I Who Cares About FP Accuracy?

Important for scientific code

 But for everyday consumer use?
- "My bank balance is out by 0.0002¢!" ®

The Intel Pentium FDIV bug

« The market expects accuracy

« See Colwell, 7he Pentium Chronicles = —
e BUSINESS. (&=r =

8 PSP

Intel to work on software pﬂtch for Pentium bug

,un r Mats I

" Bug Dodge Booed ;
f

el -

Grove says |
sorry about
Pentium bu

Flawed Chlp: ¢

T
Bruises Intel
‘ -;, BUSINESS
W
' Intel’s Penhum Problem Pers fnl

Pentiomwoescontinse 1BM. t0 Stop
z ‘JT tl}rf.. mﬂjl : :nP:g egw Sh'lpl?lng

FIGURE 3.23 A sampling of newspaper md m-‘ulno .ﬂcln from Novm 1994,
including the New York Times, San I e Mer: wry News, San Fra o Chronicle, and Infoworld.

The Pentium floating-point divide l-nb ade l! “To, | 10 List”™ of ﬂ I {I otle n Late Show on
television. Intel eventually took a $300 Ilmn write-c eplace the buggy l ips

26

I Floating Point Disasters

Intel

Ships and Denies Bugs

In 1994, Intel shipped its first Pentium processors with a
floating-point divide bug

The bug was due to bad look-up tables used in to speed up quotient
calculations

After months of denials, Intel adopted a no-questions replacement
policy, costing $300M.

(http://www.intel.com/support/processors/pentium/fdiv/)

Pentium FDIY Error

1.35384 +

HB

A 3-D plot of the ratio 4195835/3145727 calculated on a Pentium with FDIV

bug. The depressed triangular areas indicate where incorrect values have

been computed. The correct values all would round to 1.3338, but the

returned values are 1.3337, an error in the fifth significant digit. Byte

Magazine, March 1995. 27

I Floating Point Disasters

Scud Missiles get through, 28 die

e« In 1991, during the 1st Gulf War, a Patriot missile defense system
let a Scud get through, hit a barracks, and kill 28 people

e The problem was due to a floating-point error when taking the
difference of a converted & scaled integer

e (Source: Robert Skeel, "Round-off error cripples Patriot Missile",
SIAM News, July 1992.)

() mormay 5
X KAMD #i% 22

A% / .
.~"... .-"--. e t —~

WAL E2URA]

FEA gy
10km) B O
] 2 X
A 5 s gy N, SR :
Logm By |
27| AR WX E 5, |1Z=e0ld 2

N
OIXIA PHEHKDX-3) " o

28

I Floating Point Disasters

$7B Rocket crashes (Ariane 5)

When the first ESA Ariane 5 was launched on June 4, 1996, it lasted

only 39 seconds, then the rocket veered off course and self-
destructed

An inertial system, produced a floating-point exception while
trying to convert a 64-bit floating-point number to an integer

Ironically, the same code was used in the Ariane 4, but the larger
values were never generated

(http://www.around.com/ariane.html).

29

http://www.around.com/ariane.html

I Concluding Remarks

ISAs support arithmetic

e Signed and unsigned integers

e Floating-point approximation to reals
Bounded range and precision

e Operations can overflow and underflow

30

