
INSTRUCTIONS:
LANGUAGE OF THE COMPUTER (2)

Jo, Heeseung

2

Procedure Calling

Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure's operations

5. Place result in register for caller

6. Return to place of call

3

Register Usage

$a0 - $a3: arguments (reg's 4 - 7)

$v0, $v1: result values (reg's 2 and 3)

$t0 - $t9: temporaries

• Can be overwritten by callee

$s0 - $s7: saved

• Must be saved/restored by callee

$gp: global pointer for static data (reg 28)

$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

4

Procedure Call Instructions

Procedure call: jump and link

jal ProcedureLabel

• Put the address of following instruction into $ra

• Jumps to target address

Procedure return: jump register

jr $ra

• Copies $ra to program counter

• Can also be used for computed jumps

- e.g., for case/switch statements

5

Leaf Procedure Example

C code:

int leaf_example (int g, h, i, j)
{
int f;
f = (g + h) - (i + j);
return f;

}

• Arguments g, …, j in $a0, …, $a3

• f in $s0 (hence, need to save $s0 on stack)

• Result in $v0

6

Non-Leaf Procedures

Procedures that call other procedures

For nested call, caller needs to save on the stack:

• Its return address

• Any arguments and temporaries needed after the call

Restore from the stack after the call

7

Non-Leaf Procedure Example

C code:

int fact (int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

• Argument n in $a0

• Result in $v0

8

Branch Addressing

Branch instructions specify

• Opcode, two registers, target address

• beq rs, rt, L1

Most branch targets are near branch

• Forward or backward

PC-relative addressing

• Target address = PC + offset × 4

• PC already incremented by 4 by this time

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

9

Jump Addressing

Jump (j and jal) targets could be anywhere in text segment

• Encode full address in instruction

(Pseudo)Direct jump addressing

• Target address = PC31…28 : (address × 4)

op address

6 bits 26 bits

10

Target Addressing Example

Loop code from earlier example

• Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

$t0 - $t7 are reg's 8 - 15
$t8 - $t9 are reg's 24 - 25
$s0 - $s7 are reg's 16 - 23

12

Addressing Mode Summary

addi $s3, $s3, 4

add $t0, $s3, $s3

lw $t0, 32($s3)

bne $t0, $s5, Exit

j Loop

13

Effect of Compiler Optimization

0

0.5

1

1.5

2

2.5

3

none O1 O2 O3

Relative Performance

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

none O1 O2 O3

Clock Cycles

0

20000

40000

60000

80000

100000

120000

140000

none O1 O2 O3

Instruction count

0

0.5

1

1.5

2

none O1 O2 O3

CPI

Compiled with gcc for Pentium 4 under Linux

14

Effect of Language and Algorithm

0

0.5

1

1.5

2

2.5

3

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Bubblesort Relative Performance

0

0.5

1

1.5

2

2.5

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort Relative Performance

0

500

1000

1500

2000

2500

3000

C/none C/O1 C/O2 C/O3 Java/int Java/JIT

Quicksort vs. Bubblesort Speedup

15

Lessons Learnt

Instruction count and CPI are not good performance indicators in
isolation

Compiler optimizations are sensitive to the algorithm

Java/JIT compiled code is significantly faster than JVM
interpreted

• Comparable to optimized C in some cases

Nothing can fix a dumb algorithm!

17

The Intel x86 ISA

Evolution with backward compatibility

• 8080 (1974): 8-bit microprocessor

- Accumulator, plus 3 index-register pairs

• 8086 (1978): 16-bit extension to 8080

- Complex instruction set (CISC)

• 8087 (1980): floating-point coprocessor

- Adds FP instructions and register stack

• 80286 (1982): 24-bit addresses, MMU

- Segmented memory mapping and protection

• 80386 (1985): 32-bit extension (now IA-32)

- Additional addressing modes and operations

- Paged memory mapping as well as segments

18

The Intel x86 ISA

Further evolution ...

• i486 (1989): pipelined, on-chip caches and FPU

- Compatible competitors: AMD, Cyrix, …

• Pentium (1993): superscalar, 64-bit datapath

- Later versions added MMX (Multi-Media eXtension) instructions

- The infamous FDIV bug

• Pentium Pro (1995), Pentium II (1997)

- New microarchitecture (see Colwell, The Pentium Chronicles)

• Pentium III (1999)

- Added SSE (Streaming SIMD Extensions) and associated registers

• Pentium 4 (2001)

- New microarchitecture

- Added SSE2 instructions

19

The Intel x86 ISA

And further ...

• AMD64 (2003): extended architecture to 64 bits

• EM64T - Extended Memory 64 Technology (2004)

- AMD64 adopted by Intel (with refinements)

- Added SSE3 instructions

• Intel Core (2006)

- Added SSE4 instructions, virtual machine support

• AMD64 (announced 2007): SSE5 instructions

• Advanced Vector Extension (announced 2008)

- Longer SSE registers, more instructions

If Intel didn't extend with compatibility, its competitors would!

• Technical elegance ≠ market success

20

Basic x86 Registers

21

Basic x86 Addressing Modes

Two operands per instruction

c.f) MIPS has no memory operand (use load, store)

Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

22

Basic x86 Addressing Modes

movl operand combinations

• Cannot do memory-memory transfers with single instruction

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

23

x86 Instruction Encoding

Variable length encoding

• Postfix bytes specify
addressing mode

• Prefix bytes modify
operation

- Operand length,
repetition, locking, …

25

Fallacies

Powerful instruction  higher performance

• It is not always true

• Fewer instructions required

• But complex instructions are hard to implement

- May slow down all instructions, including simple ones

• Compilers are good at making fast code from simple instructions

Use assembly code for high performance

• But modern compilers are better at dealing with modern processors

• More lines of code  more errors and less productivity

26

Fallacies

Backward compatibility  instruction set doesn't change

• But they do accrete more instructions

x86 instruction set

27

Concluding Remarks

Design principles

• Simplicity favors regularity

• Smaller is faster

• Make the common case fast

• Good design demands good compromises

Layers of software/hardware

• Compiler, assembler, hardware

MIPS: typical of RISC ISAs

• c.f. x86

28

Concluding Remarks

Measure MIPS instruction executions in benchmark programs

• Consider making the common case fast

• Consider compromises

Instruction
class

MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer
lw, sw, lb, lbu, lh,

lhu, sb, lui
35% 36%

Logical
and, or, nor, andi, ori,

sll, srl
12% 4%

Cond. Branch
beq, bne, slt, slti,

sltiu
34% 8%

Jump j, jr, jal 2% 0%

