
INSTRUCTIONS:
LANGUAGE OF THE COMPUTER (1)

Jo, Heeseung

3

Instruction Set

The repertoire of instructions of a computer

Different computers have different instruction sets

• But with many aspects in common

Early computers had very simple instruction sets

• Simplified implementation

Many modern computers also have simple instruction sets

4

The MIPS Instruction Set

Used as the example throughout the book

Stanford MIPS commercialized by MIPS Technologies (www.mips.com)

Large share of embedded core market

• Applications in consumer electronics, network/storage equipment,
cameras, printers, ...

Typical of many modern ISAs

• See MIPS Reference Data tear-out card, and Appendixes B and E

http://www.mips.com/

5

Arithmetic Operations

Add and subtract, three operands

• Two sources and one destination

add a, b, c # a gets b + c

All arithmetic operations have this form

Design Principle 1: Simplicity favors regularity

• Regularity makes implementation simpler

• Simplicity enables higher performance at lower cost

6

Arithmetic Example

C code:

f = (g + h) - (i + j);

Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

7

Register Operands

Arithmetic instructions use register operands

MIPS has a 32 × 32-bit register file

• Use for frequently accessed data

• Numbered 0 to 31

• 32-bit data called a "word"

Assembler names

• $t0, $t1, ..., $t9 for temporary values

• $s0, $s1, ..., $s7 for saved variables

Design Principle 2: Smaller is faster

• c.f. main memory: millions of locations

8

Register Operand Example

C code:

f = (g + h) - (i + j);

• f, ..., j in $s0, ..., $s4

Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

9

Memory Operands

Main memory used for composite data

• Arrays, structures, dynamic data

To apply arithmetic operations

• Load values from memory into registers

• Store result from register to memory

Memory is byte addressed

• Each address identifies an 8-bit byte

Words are aligned in memory

• Address must be a multiple of 4

10

Byte Ordering

MIPS is Big Endian

• Most-significant byte at least address of a word

• c.f. Little Endian: least-significant byte at least address

Big endian

• Least significant byte has highest address

Little endian

• Least significant byte has lowest address

http://en.wikipedia.org/wiki/File:Big-Endian.svg

11

Memory Operand Example 1

C code:

g = h + A[8];

• g in $s1, h in $s2, base address of A in $s3

Compiled MIPS code:

• Index 8 requires offset of 32

- 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

12

Memory Operand Example 2

C code:

A[12] = h + A[8];

• h in $s2, base address of A in $s3

Compiled MIPS code:

• Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

13

Registers vs. Memory

Registers are much much faster to access than memory

Operating on memory data requires loads and stores

• More instructions to be executed

Compiler must use registers for variables as much as possible

• Only spill to memory for less frequently used variables

• Register optimization is important!

14

Registers vs. Memory

Qureshi (IBM Research) et al., Scalable High Performance Main Memory System Using
Phase-Change Memory Technology, ISCA 2009.

15

Immediate Operands

Constant data specified in an instruction

addi $s3, $s3, 4

No subtract immediate instruction

• Just use a negative constant

• addi $s2, $s1, -1

Design Principle 3: Make the common case fast

• add vs. addi

• Small constants are common

• Immediate operand avoids a load instruction

16

The Constant Zero

MIPS register 0 ($zero) is the constant 0

• Cannot be overwritten

Useful for common operations

• E.g., move between registers

add $t2, $s1, $zero

17

Unsigned Binary Integers

Given an n-bit number

Range: 0 to +2n-1

Example

• 0000 0000 0000 0000 0000 0000 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

Using 32 bits

• 0 to +4,294,967,295

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++= −

−

−

− 

18

2s-Complement Signed Integers

Given an n-bit number

Range: -2n-1 to +2n-1-1

Example

• 1111 1111 1111 1111 1111 1111 1111 11002
= -1×231 + 1×230 + … + 1×22 +0×21 +0×20

= -2,147,483,648 + 2,147,483,644 = -410

Using 32 bits

• -2,147,483,648 to +2,147,483,647

0

0

1

1

2n

2n

1n

1n 2x2x2x2xx ++++−= −

−

−

− 

19

2s-Complement Signed Integers

Bit 31 is sign bit

• 1 for negative numbers

• 0 for non-negative numbers

Non-negative numbers have the same unsigned and 2s-complement
representation

Some specific numbers

• 0: 0000 0000 … 0000

• -1: 1111 1111 … 1111

• Most-negative: 1000 0000 … 0000

• Most-positive: 0111 1111 … 1111

20

Signed Negation

Complement and add 1

• Complement means 1 → 0, 0 → 1

Example: negate +2

• +2 = 0000 0000 … 00102

• -2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

x1x

11111...111xx 2

−=+

−==+

21

Sign Extension (Ex. 8bit -> 16bit)

Representing a number using more bits

• Preserve the numeric value

In MIPS instruction set

• addi: extend immediate value

• lb, lh: extend loaded byte/halfword

• beq, bne: extend the displacement

Replicate the sign bit to the left

• c.f. unsigned values: extend with 0s

Examples: 8-bit to 16-bit

• +2: 0000 0010 => 0000 0000 0000 0010

• -2: 1111 1110 => 1111 1111 1111 1110

22

Representing Instructions

Instructions are encoded in binary

• Called machine code

MIPS instructions

• Encoded as 32-bit instruction words

• Small number of formats encoding operation code (opcode), register
numbers, ...

• Regularity!

Register numbers

• $t0 - $t7 are reg's 8 - 15

• $t8 - $t9 are reg's 24 - 25

• $s0 - $s7 are reg's 16 - 23

24

Stored Program Computers

Instructions represented in binary, just like data

Instructions and data stored in memory

Programs can operate on programs

• e.g., compilers, linkers, …

Binary compatibility allows compiled
programs to work on different computers

• Standardized ISAs

25

MIPS R-format Instructions

Instruction fields

• op: operation code (opcode)

• rs: first source register number

• rt: second source register number

• rd: destination register number

• shamt: shift amount (00000 for now)

• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

26

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

28

MIPS I-format Instructions

Immediate arithmetic and load/store instructions

• rt: destination or source register number

• Constant: -215 to +215 - 1

• Address: offset added to base address in rs

• E.g.

- addi $s3, $s3, 4

- lw $t0, 32($s3)

Design Principle 4: Good design demands
good compromises

• Different formats complicate decoding

• Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

29

Logical Operations

Instructions for bitwise manipulation

Useful for extracting and inserting groups of bits in a word

Operation C Java MIPS

Shift left << << sll

Shift right >> >> or >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

30

Shift Operations

Shift left logical

• Shift left and fill with 0 bits

• sll by i bits multiplies by 2i

Shift right logical

• Shift right and fill with 0 bits

• srl by i bits divides by 2i (unsigned only)

Shift right arithmatic

• Shift right and fill with MSB bits

shamt: how many positions to shift

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

31

AND Operations

Useful to mask bits in a word

• Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

32

OR Operations

Useful to include bits in a word

• Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

33

NOT Operations

Useful to invert bits in a word

• Change 0 to 1, and 1 to 0

MIPS has NOR 3-operand instruction

• a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

34

Conditional Operations

Branch to a labeled instruction if a condition is true

• Otherwise, continue sequentially

beq rs, rt, L1

• if (rs == rt) branch to instruction labeled L1;

bne rs, rt, L1

• if (rs != rt) branch to instruction labeled L1;

j L1

• unconditional jump to instruction labeled L1

35

Compiling If Statements

C code:

if (i==j) f = g + h;
else f = g - h;

• f, g, … in $s0, $s1, …

Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

36

Compiling Loop Statements

C code:

while (save[i] == k) i += 1;

• i in $s3, k in $s5, address of save in $s6

Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

37

Basic Blocks

A basic block is a sequence of instructions with

• No embedded branches (except at end)

• No branch targets (except at beginning)

A compiler identifies basic blocks
for optimization

An advanced processor can
accelerate execution of basic
blocks

38

More Conditional Operations

Set result to 1 if a condition is true

• Otherwise, set to 0

slt rd, rs, rt

• if (rs < rt) rd = 1; else rd = 0;

slti rt, rs, constant

• if (rs < constant) rt = 1; else rt = 0;

Use in combination with beq, bne

• slt $t0, $s1, $s2 # if ($s1 < $s2)

• bne $t0, $zero, L # branch to L

39

Branch Instruction Design

Why not blt, bge, etc?

For hardware, <, ≥, … slower than =, ≠

• Combining with branch involves more work per instruction, requiring
a slower clock

• All instructions penalized!

beq and bne are the common case

This is a good design compromise

Clock (cycles)

Data transfer
and computation

Update state

Clock period

40

Signed vs. Unsigned

Signed comparison: slt, slti

Unsigned comparison: sltu, sltui

Example

• $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

• $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

• slt $t0, $s0, $s1 # signed

- -1 < +1  $t0 = 1

• sltu $t0, $s0, $s1 # unsigned

- +4,294,967,295 > +1  $t0 = 0

