
INTRODUCTION TO IA-32

Jo, Heeseung



2

IA-32 Processors

Evolutionary design

• Starting in 1978 with 8086

• Added more features as time goes on

• Still support old features, although obsolete

• Totally dominate computer market

Complex Instruction Set Computer (CISC)

• Many different instructions with many different formats

• Hard to match performance of Reduced Instruction Set Computers 
(RISC)

• But, Intel has done just that!



3

Intel's Backward Compatibility

Instruction set doesn't change

But they do accrete more instructions

x86 instruction set



5

IA-32 History

Evolution with backward compatibility

1978 8086 x86 is born

1980 8087 x87 is born

1985 80386 "IA-32"

1995 Pentium Pro PAE

1997 Pentium MMX MMX

1999 Pentium III SSE

2000 Pentium 4 SSE2

2004 Pentium 4 Prescott SSE3, Intel 64

2005 Pentium 4 662 Intel VT

2006 Core 2 SSSE3

2008 Core 2 Penryn SSE4.1

2008 Core i7 SSE4.2



6

Intel x86 Processors: Overview

X86-64 / EM64t

X86-32/IA32

X86-16 8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Core i7

IA: often redefined as latest Intel architecture

time

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4



7

Intel x86 Evolution: Milestones

Name Date Transistors MHz

8086 1978 29K 5-10

• First 16-bit processor (Basis for IBM PC & DOS)

• 1MB address space

386 1985 275K 16-33

• First 32-bit processor, referred to as IA32

• Added "flat addressing"

• Capable of running Unix

• 32-bit Linux/gcc uses no instructions introduced in later models

Pentium 4F 2004 125M 2800-3800

• First 64-bit processor, referred to as x86-64

Core i7 2008 731M 2667-3333



9

Basic Execution Environment

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

EAX

EBX

ECX

EDX

EBP

ESI

EDI

ESP

General-purpose registers
031

seg. selector

seg. selector

seg. selector

seg. selector

seg. selector

seg. selector

CS

DS

SS

ES

FS

GS

Segment registers
015

EIP

EFLAGS

031

Control registers
031

CR0

CR1

CR2

CR3

CR4

linear base address table limitGDTR

linear base address table limitIDTR

System Table Registers

0151647

seg. selector

015

TR

seg. selectorLDTR

System Segment 
Registers

Application Programming Registers



10

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

16-bit virtual registers
(backwards compatibility)

ge
ne
ra
l 
pu
rp
os
e

accumulate

counter

data

base

source 
index

destination
index

stack 
pointer

base
pointer

Origin
(mostly obsolete)



11

General-Purpose Registers

EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

EAX: Accumulator for operands and results data

EBX: Pointer to data in the DS segment

ECX: Counter for string and loop operations

EDX: I/O pointer

ESI: Pointer to data in the segment pointed to by the DS 
register; Source pointer for string operations

EDI: Pointer to data in the segment pointed to by the ES 
register; Destination pointer for string operations

ESP: Stack pointer (in the SS segment)

EBP: Pointer to data on the stack (in the SS segment)



12

EFLAGS Register (1)



13

EFLAGS Register (2)

Status flags

CF (Carry): set if an arithmetic operation generates a carry or a 
borrow; indicates an overflow condition for unsigned-integer 
arithmetic

PF (Parity): set if the least-significant byte of the result 
contains an even number of 1 bits

AF (Adjust): set if an arithmetic operation generates a carry or a 
borrow out of bit 3 of the result; used in binary-coded decimal 
(BCD) arithmetic

ZF (Zero): set if the result is zero
SF (Sign): set equal to the most-significant bit of the result
OF (Overflow): set if the integer result is too large a positive 

number or too small a negative number to fit in the destination 
operand; indicates an overflow condition for signed-integer 
arithmetic

DF (Direction): setting the DF causes the string instructions to 
auto-decrement; set and cleared by STD/CLD instructions



14

Instruction Pointer

EIP Register (Program Counter, PC)

• Contains the offset in the current code segment for the next 
instruction to be executed

- Advanced from one instruction boundary to the next in straightline code, 
or

- Moved ahead or backwards by instructions such as JMP, Jcc, CALL, RET, 
and IRET

• Cannot be accessed directly by software

- EIP is controlled implicitly by control transfer instructions, 
interrupts, and exceptions

• Because of instruction prefetching, an instruction address read 
from the bus does not match the value in the EIP register



15

Assembly Characteristics (1)

Minimal data types

• "Integer" data of 1, 2, 4, or 8 bytes

- Data values

- Addresses (untyped pointers)

• "Floating point" data of 
4, 8, or 10 bytes

• No aggregate types 
such as arrays or structures

- Just contiguously allocated 
bytes in memory

• (cf.) In IA-32, a "word"
means 16-bit data



16

Assembly Characteristics (2)

Three primitive operations

• Perform an arithmetic/logical function on register or memory data

• Transfer data between memory and register

- Load data from memory into register

- Store register data into memory

• Transfer control

- Unconditional jumps 

- Conditional branches

- Procedure calls and returns



17

IA-32 Reference

Intel 64 and IA-32 Architectures Software Developer's Manual

• Volume 1: Basic Architecture

• Volume 2A, 2B: Instruction Set Reference

• Volume 3A, 3B: System Programming Guide


