
INTRODUCTION

Jo, Heeseung

2

Course Theme:
Abstraction Is Good But Don't Forget Reality

Most CS and CE courses emphasize abstraction

• Abstract data types

• Asymptotic analysis

These abstractions have limits

• Especially in the presence of bugs

• Need to understand details of underlying implementations

Useful outcomes

• Become more effective programmers

- Able to find and eliminate bugs efficiently

- Able to understand and tune for program performance

• Prepare for later "systems" classes

- Compilers, Operating Systems, Networks, Computer Architecture, Embedded
Systems

3

Great Reality #1:
Ints are not Integers, Floats are not Reals

Example 1: Is x2 ≥ 0?

• Float's: Yes!

• Int's:

- 40000 * 40000 = 1600000000

- 50000 * 50000 = ??

Example 2: Is (x + y) + z = x + (y + z) ?

• Unsigned & Signed Int's: Yes!

• Float's:

- (1e20 + -1e20) + 3.14 --> 3.14

- 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

-1794967296 (overflow)

4

Code Security Example

Similar to code found in FreeBSD's implementation of getpeername()

There are legions of smart people trying to find vulnerabilities
in programs

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

5

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

7

Computer Arithmetic

Cannot assume all "usual" mathematical properties

• Due to finiteness of representations

• Integer operations satisfy "ring" properties

- Commutativity, associativity, distributivity

• Floating point operations satisfy "ordering" properties

- Monotonicity, values of signs

Observation

• Need to understand which abstractions apply in which contexts

• Important issues for compiler writers and serious application
programmers

8

Great Reality #2:
You Need to Know Assembly

Chances are, you'll never write programs in assembly

• Compilers are much better & more patient than you are

But: Understanding assembly is key to machine-level execution
model

• Behavior of programs in presence of bugs

- High-level language models break down

• Tuning program performance

- Understand optimizations done / not done by the compiler

- Understanding sources of program inefficiency

• Implementing system software

- Compiler has machine code as target

- Operating systems must manage process state

• Creating / fighting malware

9

Assembly Code Example

Time Stamp Counter

• Special 64-bit register in Intel-compatible machines

• Incremented every clock cycle

• Read with rdtsc instruction

Application

• Measure time (in clock cycles) required by procedure

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

10

Code to Read Counter

Write small amount of assembly code using GCC's asm facility

Inserts assembly code into machine code generated by compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

11

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

Memory is not unbounded

• It must be allocated and managed

• Many applications are memory dominated

Memory referencing bugs especially pernicious

• Effects are distant in both time and space

Memory performance is not uniform

• Cache and virtual memory effects can greatly affect program
performance

• Adapting program to characteristics of memory system can lead to
major speed improvements

12

Memory Referencing Bug Example

Result is architecture specific

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) 3.14
fun(1) 3.14
fun(2) 3.1399998664856
fun(3) 2.00000061035156
fun(4) 3.14, then segmentation fault

volatile: Don't be optimized by compiler

13

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) 3.14
fun(1) 3.14
fun(2) 3.1399998664856
fun(3) 2.00000061035156
fun(4) 3.14, then segmentation fault

Location accessed

by fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

volatile: Don't be optimized by compiler

14

Memory Referencing Errors

C and C++ do not provide any memory protection

• Out of bounds array references

• Invalid pointer values

• Abuses of malloc/free

Can lead to nasty bugs

• Whether or not bug has any effect depends on system and compiler

• Action at a distance

- Corrupted object logically unrelated to one being accessed

- Effect of bug may be first observed long after it is generated

How can I deal with this?

• Program in Java, Ruby or ML

• Understand what possible interactions may occur

• Use or develop tools to detect referencing errors
(e.g. Valgrind)

15

Memory System Performance Example

Need to understand hierarchical memory organization

Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower

16

The Memory Mountain

6
4
M

8
M

1
M 1
2
8

K 1
6
K

2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2

Size (bytes)

R
e
a

d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

17

Great Reality #4: There's more to performance than asymptotic comp
lexity

Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

• Easily see 10:1 performance range depending on how code written

Must understand system to optimize performance

• How programs compiled and executed

• How to measure program performance and identify bottlenecks

• How to improve performance without destroying code modularity and
generality

18

Example Matrix Multiplication

Standard desktop computer, vendor compiler, using optimization
flags

• Both implementations have exactly the same operations count (2n3)

What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

160x

Triple loop

Best code (K. Goto)

Gf
lo
p/
s

19

MMM Plot: Analysis

Reason for 20x:

• Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

Effect: fewer register spills, L1/L2 cache misses, and TLB misses

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gf
lo
p/
s

20

Great Reality #5:
Computers do more than execute programs

They need to get data in and out

• I/O system critical to program reliability and performance

They communicate with each other over networks

• Many system-level issues arise in presence of network

- Concurrent operations by autonomous processes

- Coping with unreliable media

- Cross platform compatibility

- Complex performance issues

