
COMPUTER ARCHITECTURE REVIEW

Jo, Heeseung

2

What You Learned

How programs are translated into the machine language

• And how the hardware executes them

The hardware/software interface

What determines program performance

• And how it can be improved

How hardware designers improve performance

What is parallel processing

3

Introduction

The advent of the digital age

• Analog vs. digital?

• Compact disc (CD)

- 44.1 KHz, 16-bit, 2-channel

• MP3

- A digital audio encoding with lossy data compression

4

Representing Information

Information = Bits + Context

• Computers manipulate representations of things

• Things are represented as binary digits

• What can you represent with N bits?

- 2N things

- Numbers, characters, pixels, positions, source code, executable files,
machine instructions, …

- Depends on what operations you do on them

01110011 01100101 01101101 01101001

's' 'e' 'm' 'i' 's' 'e' 'm' 'i'(char)

1768777075 1768777075(int)

7.03168990329170808178… x 10199(double)

01110011 01100101 01101101 01101001

5

Binary Representations

Why not base 10 representation?

• Easy to store with bistable elements

• Straightforward implementation of arithmetic functions

• Reliably transmitted on noisy and inaccurate wires

Electronic implementation

0.0V

0.5V

2.8V

3.3V

0 1 0

6

Encoding Byte Values

Byte = 8 bits

• Binary: 000000002 to 111111112

• Octal: 0008 to 3778
- An integer constant that begins with 0

is an octal number in C

• Decimal: 010 to 25510
- First digit must not be 0 in C

• Hexadecimal: 0016 to FF16
- Base 16 number representation

- Use characters '0' to '9' and 'A' to 'F'

- Write FA1D37B16 in C as 0xFA1D37B

or 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

7

Boolean Algebra (1)

Developed by George Boole in 1849

• Algebraic representation of logic

- Encode "True" as 1 and "False" as 0

And

• A&B = 1 when both A=1 and B=1

& 0 1

0 0 0

1 0 1

~

0 1

1 0

Not

• ~A = 1 when A=0

Or

• A|B = 1 when either A=1 or B=1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Exclusive-Or (Xor)

• A^B = 1 when either A=1 or B=1,
but not both

8

Boolean Algebra (2)

0 0 1 1

0 1 0 1

0 0 0 0 Constant 0

0 0 0 1 X & Y ; AND

0 0 1 0 ~ (X → Y)

0 0 1 1 X

0 1 0 0 ~ (Y → X)

0 1 0 1 Y

0 1 1 0 X ^ Y ; XOR

0 1 1 1 X | Y ; OR

1 0 0 0 ~ (X | Y) ; NOR

1 0 0 1 ~ (X ^ Y) ; X-NOR

1 0 1 0 ~ Y

1 0 1 1 Y → X

1 1 0 0 ~ X

1 1 0 1 X → Y ; Implication

1 1 1 0 ~ (X & Y) ; NAND

1 1 1 1 Constant 1

X

Y
f

X

Y
f (X, Y)

Basic operations: AND(&), OR(|), NOT(~)
X ^ Y = (X & ~Y) | (~X & Y)
X → Y = ~X | Y

A complete set: NAND = ~ (X & Y)

9

Combinational Logic

Adder

Full Adder

4-bit Ripple Carry Adder

Full Adder (NAND version)

http://upload.wikimedia.org/wikipedia/commons/a/aa/Full_Adder.svg
http://upload.wikimedia.org/wikipedia/commons/4/48/1-bit_full-adder.svg
http://upload.wikimedia.org/wikipedia/commons/b/b4/4-bit_ripple_carry_adder-2.png

10

Sequential Logic

Flip-flops

Edge triggered D flip-flop

Shifter

4-bit register

http://upload.wikimedia.org/wikipedia/en/7/74/Edge_triggered_D_flip-flop.png

11

Clocking Methodology

Combinational logic transforms data during clock cycles

• Between clock edges

• Input from state elements, output to state element

• Longest delay determines clock period

17

Digital Systems

Summary

• Boolean algebra is a mathematical foundation for modern digital
systems

• Boolean algebra provides an effective means of describing circuits
built with switches

- Claude Shannon in the late 1930's

• You can build any digital
systems with NAND gates

• A NAND gate can be easily
built with CMOS transistors

• The transistor is the basic
building block for digital
systems

Intel Xeon 7560 (8-core): 2.3B transistors

18

Components of a Computer

Same components for
all kinds of computer

• Desktop, server, embedded

Input/output includes

• User-interface devices

- Display, keyboard, mouse

• Storage devices

- Hard disk, CD/DVD, flash

• Network adapters

- For communicating with
other computers

19

Understanding Performance

Algorithm

• Determines number of operations executed

Programming language, compiler, architecture

• Determine number of machine instructions executed per operation

Processor and memory system

• Determine how fast instructions are executed

I/O system (including OS)

• Determines how fast I/O operations are executed

20

Defining Performance

Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

21

Response Time and Throughput

Response time

• How long it takes to do a task

Throughput

• Total work done per unit time

- e.g., tasks/transactions/… per hour

How are response time and throughput affected by

• Replacing the processor with a faster version?

• Adding more processors?

22

Levels of Program Code

High-level language

• Level of abstraction closer to
problem domain

• Provides for productivity and
portability

Assembly language

• Textual representation of
instructions

Hardware representation

• Binary digits (bits)

• Encoded instructions and data

23

MIPS R-format Instructions

Instruction fields

• op: operation code (opcode)

• rs: first source register number

• rt: second source register number

• rd: destination register number

• shamt: shift amount (00000 for now)

• funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

24

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

25

Translation and Startup

Many compilers produce object
modules directly

Static
linking

