
OPERATING SYSTEM REVIEW

Jo, Heeseung

2

Operating system?

Computer systems internals

PROCESSES

Jo, Heeseung

4

What Is The Process?

Program?

vs.

Process?

vs.

Processor?

vs.

Task? Job?

5

Process Concept (1)

What is the process?

• An instance of a program in execution

• An encapsulation of the flow of control in a program

• A dynamic and active entity

• The basic unit of execution and scheduling

• A process is named using its process ID (PID)

• A process includes:

- CPU contexts (registers)

- OS resources (memory, open files, etc.)

- Other information (PID, state, owner, etc.)

6

Process Concept (2)

Process in memory

program

code

data

kernel virtual memory
(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0xffffffff

stack pointer

7

Process Creation (1)

Process hierarchy

• One process can create another
process: parent-child relationship

• UNIX calls the hierarchy
a "process group"

• Windows has no concept of
process hierarchy

• Browsing a list of processes:

- ps in UNIX

- taskmgr (Task Manager) in Windows

sh

$ cat file1 | wc

cat wc

8

Process Creation (2)

Process creation events

• Calling a system call

- fork() in POSIX, CreateProcess() in Win32

- Shells or GUIs use this system call internally

• System initialization

- init process

- PID 1 process

9

Process Creation (3)

Resource sharing

• Parent may inherit all or a part of
resources and privileges for its children

- UNIX: User ID, open files, etc.

Execution

• Parent may either wait for it to finish,
or it may continue in parallel

Address space

• Child duplicates the parent's address space or has a program loaded
into it

sh

$ cat file1 | wc

cat wc

10

Process Termination

Process termination events

• Normal exit (voluntary)

• Error exit (voluntary)

• Fatal error (involuntary)

- Exceed allocated resources

- Segmentation fault

- Protection fault, etc.

• Killed by another process
(involuntary)

- By receiving a signal

#include <stdio.h>

int main()
{

int i, fd;
char buf[100];

fd=open("a.txt", "r");
if (fd==NULL)

return -1;
read(fd, buf, 1000);

return 0;
}

11

fork()

fork() system call

• Creating a child process

• Copy the whole virtual address space of parent to create a child
process

• Copy internal data structures to manage a child process

• Parent get the pid of a child

• Child get 0 value

12

fork()

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

pid = fork();
if (pid == 0)

/* child */
printf ("Child of %d is %d\n",

getppid(), getpid());
else

/* parent */
printf ("I am %d. My child is %d\n",

getpid(), pid);
}

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

pid = fork();
if (pid == 0)

/* child */
printf ("Child of %d is %d\n",

getppid(), getpid());
else

/* parent */
printf ("I am %d. My child is %d\n",

getpid(), pid);
}

13

fork(): Example Output

% ./a.out

I am 30000. My child is 30001.

Child of 30000 is 30001.

% ./a.out

Child of 30002 is 30003.

I am 30002. My child is 30003.

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

pid = fork();
if (pid == 0)

/* child */
printf ("Child of %d is %d\n",

getppid(), getpid());
else

/* parent */
printf ("I am %d. My child is %d\n",

getpid(), pid);
}

14

fork() and Virtual Address Space

kernel virtual memory
(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0xffffffff

stack pointer

kernel virtual memory
(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

0xffffffff

stack pointer

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

pid = fork();
if (pid == 0)

/* child */
printf ("Child of %d is %d\n",

getppid(), getpid());
else

/* parent */
printf ("I am %d. My child is %d\n",

getpid(), pid);
}

#include <sys/types.h>
#include <unistd.h>

int main()
{

int pid;

pid = fork();
if (pid == 0)

/* child */
printf ("Child of %d is %d\n",

getppid(), getpid());
else

/* parent */
printf ("I am %d. My child is %d\n",

getpid(), pid);
}

15

Why fork()?

Very useful when the child ...

• Is cooperating with the parent

• Relies upon the parent's data to accomplish its task

• Example: Web server

While (1) {

int sock = accept();

if ((pid = fork()) == 0) {

/* Handle client request */

} else {

/* Close socket */

}

}

16

Zombie vs. orphan process

Zombie process (defunct process)

• A process that completed execution (via the exit system call) but
still has an entry in the process table

• This occurs for the child processes, where the entry is still
needed to allow the parent process to read its child's exit status

int main() {

pid_t childPid;

childPid = fork();

if (childPid > 0) { // parent process
printf("parent PID : %ld, pid : %d\n",(long)getpid(), childPid);
sleep(30);
printf("parent exit\n");
exit(0);

}
else if (childPid == 0){ // 자식 코드

printf("child PID : %ld\n", (long)getpid());
sleep(1);
printf("child exit\n");
exit(0);

}
return 0;

}

17

Zombie vs. orphan process

Orphan process

• A process whose parent process has finished or terminated, though
it remains running itself

• Any orphaned process will be immediately adopted by the special
init system process

int main() {

pid_t childPid;
int i;

childPid = fork();

if (childPid > 0) { // parent process
printf("parent PID : %ld, pid : %d\n",(long)getpid(), childPid);
sleep(2);
printf("parent exit\n");
exit(0);

}
else if (childPid == 0){ // child process

for(i=0;i<10;i++) {
printf("child PID : %ld parent PID : %ld\n",(long)getpid(), (long)getppid());
sleep(1);

}
printf("child exit\n");
exit(0);

}

18

Process State Transition (1)

THREADS

Jo, Heeseung

20

Rethinking Processes

What's similar in these cooperating processes?

• They all use (share?) the same code and data (address space)

• They all use the same privilege

• They all use the same resources (files, sockets, etc.)

What's different?

• Each has its own hardware execution state:
PC, registers, SP, and stack

21

Key Idea (1)

Separate the concept of a process from its execution state

• Process: address space, resources, other general process attributes

- e.g., privileges

• Execution state: PC, SP, registers, etc.

• This execution state is usually called

- Thread

- Lightweight process (LWP)

- Thread of control

22

Key Idea (2)

23

Key Idea (3)

Each thread has its own stack

24

Key Idea (4)

Each thread has its own stack

25

What is a Thread?

A thread of control (or a thread)

• A sequence of instructions being executed in a program

• Usually consists of

- A program counter (PC), general registers

- A stack to keep track of local variables and return addresses

• Threads share the process instructions and most of its data

- A change in shared data by one thread can be seen by the other threads
in the process

• Threads also share most of the OS state of a process

26

Concurrent Servers: Threads

Using threads

• We can create a new thread for each request

webserver ()

{

while (1) {

int sock = accept();

create_thread (handle_request, sock);

}

}

handle_request (int sock)

{

/* Process request */

close (sock);

}

27

Multithreading

Benefits

• Creating concurrency is cheap

- Time and memory consumption

• Improves program structure

• Higher throughput

- By overlapping computation with I/O operations

• Better responsiveness (User interface / Server)

- Can handle concurrent events (e.g., web servers)

• Better resource sharing

• Utilization of multiprocessor architectures

- Allows building parallel programs

28

Address Space with Threads

0x00000000

0xFFFFFFFF

address space

PC (T2)

SP (T2)

code

(text segment)

static data

(data segment)

heap

(dynamically allocated mem)

thread 1 stack

thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)

PC (T3)

29

pthreads (1)

Thread creation/termination

int pthread_create (pthread_t *tid,
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval);

int pthread_join (pthread_t tid,
void **thread_return);

30

The Pthreads "hello, world" Program

#include <stdio.h>
#include <pthread.h>

void *threadfunc(void *vargp);

/* thread routine */
void *threadfunc(void *vargp) {
sleep(1);
printf("Hello, world!\n");
return NULL;

}

int main() {
pthread_t tid;

pthread_create(&tid, NULL, threadfunc, NULL);
printf("main\n");
pthread_join(tid, NULL);
printf("main2\n");
sleep(2);
return 0;

}

gcc ex.c -lpthread
./a.out
main
Hello, world!
main2

31

pthreads (2)

Mutexes

int pthread_mutex_init
(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy
(pthread_mutex_t *mutex);

void pthread_mutex_lock
(pthread_mutex_t *mutex);

void pthread_mutex_unlock
(pthread_mutex_t *mutex);

32

Threads using shared data

#include <pthread.h>
#define MAX_THREAD 20

void *threadcount(void *data) {
int *count = (int *)data;
int i;
for (i=0; i<100; i++) {

*count = *count+1;
}

}
int main(int argc, char **argv) {

pthread_t thread_id[MAX_THREAD];
int i = 0;
int count = 0;
for(i = 0; i < MAX_THREAD; i++) {

pthread_create(&thread_id[i], NULL, threadcount, (void *)&count);
}
for(i = 0; i < MAX_THREAD; i++) {

pthread_join(thread_id[i], NULL);
}
printf("Main Thread : %d\n", count);
return 0;

}

gcc ex.c -lpthread
./a.out
Main Thread : 2000
./a.out
Main Thread : 1957

33

Threading Issues (1)

fork() and exec() can be issue

When a thread calls fork()

• Does the new process duplicate all the threads?

• Is the new process single-threaded?

Some UNIX systems support two versions of fork()

• In pthreads,

- fork() duplicates only a calling thread

• In the Unix international standard,

- fork() duplicates all parent threads in the child

- fork1() duplicates only a calling thread

Normally, exec() replaces the entire process

If a thread call exit()?

If the main thread dies(return, exit()) before child threads?

