
LARGE AND FAST: EXPLOITING MEMORY
HIERARCHY

Jo, Heeseung

2

Inside the Processor (CPU)

3

Memory Technology

Static RAM (SRAM)

• 0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)

• 50ns – 70ns, $20 – $75 per GB

Magnetic disk

• 5ms – 20ms, $0.20 – $2 per GB

Ideal memory

• Access time of SRAM

• Capacity and cost/GB of disk

§5
.
1
I
nt
r
od
u
ct
i
on

4

Registers vs. Memory

Qureshi (IBM Research) et al., Scalable High Performance Main Memory System Using
Phase-Change Memory Technology, ISCA 2009.

5

Principle of Locality

Programs access a small proportion of their address space at any
time

Temporal locality

• Items accessed recently are likely to be accessed again soon

• e.g., instructions in a loop, induction variables

Spatial locality

• Items near those accessed recently are likely to be accessed soon

• E.g., sequential instruction access, array data

6

Taking Advantage of Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk to smaller
DRAM memory

• Main memory

Copy more recently accessed (and nearby) items from DRAM to
smaller SRAM memory

• Cache memory attached to CPU

7

Memory Hierarchy Levels

Block (aka line): unit of copying

• May be multiple words

If accessed data is present in upper level

• Hit: access satisfied by upper level

- Hit ratio: hits/accesses

If accessed data is absent

• Miss: block copied from lower level

- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 - hit ratio

• Then accessed data supplied from upper level

8

Cache Memory

Cache memory

• The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

§5
.
2
T
he

Ba
s
ic
s
 o
f
 C
a
ch
e
s

How do we know if the data
is present?

Where do we look?

9

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

Num. of Blocks is a
power of 2

Use low-order
address bits

10

Tags and Valid Bits

How do we know which particular block is stored in a cache
location?

• Store block address as well as the data

• Actually, only need the high-order bits

• Called the tag

What if there is no data in a location?

• Valid bit: 1 = present, 0 = not present

• Initially 0

11

Address Subdivision

12

Cache Example

8-blocks, 1 word/block, direct mapped

Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

13

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

14

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

15

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

16

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

17

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

18

Example: Larger Block Size

32 bit, 64 blocks, 16 bytes/block

• To what block number does address 1200 map?

Block address = 1200/16 = 75

Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

19

Block Size Considerations

Larger blocks should reduce miss rate

• Due to spatial locality

But in a fixed-sized cache

• Larger blocks  fewer of them

- More competition  increased miss rate

• Larger blocks  pollution

4 bytes/block vs. 16 bytes/block

20

Cache Misses

On cache hit, CPU proceeds normally

On cache miss

• Stall the CPU pipeline

• Fetch block from next level of hierarchy

• Instruction cache miss

- Restart instruction fetch

• Data cache miss

- Complete data access

21

Write-Through

On data-write hit, could just update the
block in cache

• But then cache and memory would be
inconsistent

Write through: also update memory

• But makes writes take longer

• e.g., if base CPI = 1, 10% of
instructions are stored, write to
memory takes 100 cycles

- Effective CPI = 1 + 0.1×100 = 11

Solution: write buffer

• Holds data waiting to be written to memory

• CPU continues immediately

- Only stalls on write if write buffer is already full

22

Write-Back

Alternative: On data-write hit, just
update the block in cache

• Keep track of whether each block is dirty

When a dirty block is replaced

• Write it back to memory

• Can use a write buffer to allow
replacing block to be read first

23

Write Allocation

What should happen on a write miss?

Alternatives for write-through

• Allocate on miss: fetch the block
(write allocation)

• Write around: don't fetch the block
(no write allocation)

- Pass cache

For write-back

• Usually fetch the block

24

Example: Intrinsity FastMATH

Embedded MIPS processor

• 12-stage pipeline

• Instruction and data access on each cycle

Split cache: separate I-cache and D-cache

• Each 16KB: 256 blocks × 16 words/block

• I-cache: read and no write

• D-cache: write-through or write-back

SPEC2000 miss rates

• I-cache: 0.4%

• D-cache: 11.4%

25

Example: Intrinsity FastMATH

26

Main Memory Supporting Caches

Use DRAMs for main memory

• Fixed width (e.g., 1 word)

• Connected by fixed-width clocked bus

- Bus clock is typically slower than CPU clock

Example cache block read

• 1 bus cycle for address transfer

• 15 bus cycles per DRAM access

• 1 bus cycle per data transfer

For 4-word block, 1-word-wide DRAM

• Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

• Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

27

Increasing Memory Bandwidth

4-word wide memory

• Miss penalty = 1 + 15 + 1 = 17 bus cycles

• Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

4-bank interleaved memory

• Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

• Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

1 bus cycle for address transfer
15 bus cycles per DRAM access
1 bus cycle per data transfer

28

Advanced DRAM Organization

Bits in a DRAM are organized as a rectangular array

• DRAM accesses an entire row

Double data rate (DDR) DRAM

• Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM

• Separate DDR inputs and outputs

29

Measuring Cache Performance

Components of CPU time

• Program execution cycles

- Includes cache hit time

• Memory stall cycles

- Mainly from cache misses

With simplifying assumptions:

§5
.
3
M
ea
s
ur
i
ng

an
d
 I
m
pr
o
vi
n
g
C
ac
h
e
P
er
f
or
m
an
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

=

=

30

Cache Performance Example

Given

• I-cache miss rate = 2%

• D-cache miss rate = 4%

• Miss penalty = 100 cycles

• Base CPI (ideal cache) = 2

• Load & stores are 36% of instructions

Miss cycles per instruction

• I-cache: 0.02 × 100 = 2

• D-cache: 0.36 × 0.04 × 100 = 1.44

31

Average Access Time

Hit time is also important for performance

Average memory access time (AMAT)

• AMAT = Hit time + Miss rate × Miss penalty

Example

• CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20 cycles,
I-cache miss rate = 5%

• AMAT = 1 + 0.05 × 20 = 2ns

- 2 cycles per instruction

32

Performance Summary

When CPU performance increased

• Miss penalty becomes more significant

Decreasing base CPI

• Greater proportion of time spent on memory stalls

Increasing clock rate

• Memory stalls account for more CPU cycles

Can't neglect cache behavior when evaluating system performance

33

Associative Caches

Direct mapped

Fully associative

• Allow a given block to go in any cache entry

• Requires all entries to be searched at once

• Comparator per entry (expensive)

n-way set associative

• Each set contains n entries

• Block number determines which set

- (Block number) modulo (#Sets in cache)

• Search all entries in a given set at once

• n comparators (less expensive)

34

Associative Cache Example

35

Spectrum of Associativity

For a cache with 8 entries

36

Associativity Example

Compare 4-block caches

• Direct mapped vs. 2-way set associative vs. fully associative

• Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block
address

Cache
index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

37

Associativity Example

2-way set associative

Fully associative

Block
address

Cache
index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Block
address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

38

How Much Associativity

Increased associativity decreases miss rate

• But expensive

Simulation of a system with 64KB D-cache, 16-word blocks, SPEC2000

• 1-way: 10.3%

• 2-way: 8.6%

• 4-way: 8.3%

• 8-way: 8.1%

39

4-way Set Associative Cache Organization

40

Replacement Policy

Which one should be evicted?

Direct mapped: no choice

Set associative

• Prefer non-valid entry, if there is one

• Otherwise, choose among entries in the set

Least-recently used (LRU)

• Choose the one unused for the longest time

- Simple for 2-way, manageable for 4-way, too hard beyond that

Random

• Gives approximately
the same performance
as LRU for high
associativity

41

Multilevel Caches

Primary cache attached to CPU

• Small, but fast

Level-2 cache services misses from primary cache

• Larger, slower, but still faster than main memory

Main memory services L-2 cache misses

Current systems include L-3 cache

42

Inside the Processor (CPU)

AMD Barcelona: 4 processor cores

43

Multilevel Cache Example

Given

• CPU base CPI = 1, clock rate = 4GHz

• Miss rate/instruction = 2%

• Main memory access time = 100ns

With just primary cache

• Miss penalty = 100ns/0.25ns = 400 cycles

• Effective CPI = 1 + 0.02 × 400 = 9

44

Example (cont.)

Now add L-2 cache

• Access time = 5ns

• Global miss rate to main memory = 0.5%

Primary miss with L-2 hit

• Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss

• Extra penalty = 400 cycles

CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

Performance ratio = 9/3.4 = 2.6

45

Multilevel Cache Considerations

Primary cache

• Focus on minimal hit time

L-2 cache

• Focus on low miss rate to avoid main memory access

• Hit time has less overall impact

Results

• L-1 cache usually smaller than L-2 cache

• L-1 block size smaller than L-2 block size

46

Interactions with Advanced CPUs

Out-of-order CPUs can execute instructions during cache miss

• Pending load/store stays in load/store unit

- Dependent instructions wait in reservation stations

• Independent instructions continue

Effect of miss depends on program data flow

• Much harder to analyze

• Use system simulation

47

Interactions with Software

Misses depend on memory access patterns

• Algorithm behavior

• Compiler optimization for memory access

48

Memory System Performance Example

Need to understand hierarchical memory organization

Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

49

The Memory Mountain

6
4
M

8
M

1
M 1
2
8

K 1
6
K

2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2

Size (bytes)

R
e
a

d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7
2.67 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache

