
THE PROCESSOR

Jo, Heeseung

2

Introduction

CPU performance factors

• Instruction count

- Determined by ISA and compiler

• CPI and Cycle time

- Determined by CPU hardware

• But, remember that is not all

3

Instruction Execution

1. PC → instruction memory

2. Fetch instruction and decoding

3. Register numbers → register file, read registers

4. Depending on instruction class

• Use ALU to calculate

- Arithmetic result

- Memory address for load/store

- Branch target address

• Access data memory for load/store

• PC target address or PC + 4

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

4

CPU Overview

5

Multiplexers

Can’t just join wires
together

• Use multiplexers

6

Control

7

Logic Design Basics

Information encoded in binary

• Low voltage = 0, High voltage = 1

• One wire per bit

• Multi-bit data encoded on multi-wire buses

Combinational element

• Operate on data

• Output is a function of input

State (sequential) elements

• Store information

8

Combinational Elements

AND-gate

• Y = A & B

A

B
Y

I0

I1
Y

M
u
x

S

Multiplexer

• Y = S ? I1 : I0

A

B

Y+

A

B

YALU

F

Adder

• Y = A + B

Arithmetic/Logic Unit

• Y = F(A, B)

9

Sequential Elements

Register: stores data in a circuit

• Uses a clock signal to determine when to update the stored value

• Edge-triggered: update when Clk changes from 0 to 1

D

Clk

Q

Clk

D

Q

10

Sequential Elements

Register with write control

• Only updates on clock edge when write control input is 1

• Used when stored value is required later

D

Clk

Q

Write

Write

D

Q

Clk

D

CP

Q

t0 t1 t2 t3 t4 t5 t6

11

Clocking Methodology

Combinational logic transforms data during clock cycles

• Between clock edges

• Input from state elements, output to state element

• Longest delay determines clock period

12

Building a Datapath

Datapath

• Elements that process data and addresses in the CPU

- Registers, ALUs, mux’s, memories, …

Refining the overview design

13

Memory in CPU

Instruction memory

• Cache memory for instruction codes

• Replaced automatically

• e.g., L1 instruction cache

Data memory

• Cache memory for data (content of main memory)

• Replaced automatically

• e.g., L1 data cache

14

Instruction Fetch

32-bit
register

Increment by 4
for next
instruction

16

R-Format Instructions

add $t0, $s1, $s2

1. Read two register operands

2. Perform arithmetic/logical operation

3. Write register result

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

18

Load/Store Instructions

lw $t0, 32($s3)

1. Read register operands

2. Calculate address using 16-bit offset

1. Use ALU, but sign-extend offset

3. Load: Read memory and update register

4. Store: Write register value to memory

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

19

Branch Instructions

bne $t0, $s5, Exit

1. Read register operands

2. Compare operands

• Use ALU, subtract and check Zero output

3. Calculate target address

• Sign-extend displacement

• Shift left 2 places (word displacement, x4)

• Add to PC + 4

- Already calculated by
instruction fetch

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

21

R-Type/Load/Store Datapath

22

Full Datapath

23

Performance Issues

Longest delay determines clock period

• Critical path: load instruction

• Instruction memory → register file → ALU → data memory →
register file

Various period for
different instructions is
not feasible

• Violates design
principle

• Making the common case
fast

We will improve performance
by pipelining

24

Pipelining Analogy

Pipelined laundry: overlapping execution

• Parallelism improves performance

Four loads:

• Speedup
= 8/3.5 = 2.3

Non-stop:

• Speedup
≈ 4
= number of stages

25

MIPS Pipeline

Five stages, one step per stage

• IF: Instruction fetch from memory

• ID: Instruction decode & register read

• EX: Execute operation or calculate address

• MEM: Access memory operand

• WB: Write result back to register

26

Pipeline Performance

Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

Compare pipelined datapath with single-cycle datapath

Instr Instr
fetch

Register
read

ALU op Memory
access

Register
write

Total
time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

27

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

28

Pipeline Speedup

If all stages are balanced

• i.e., all take the same time

Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

If not balanced, speedup is less

Speedup is due to increased throughput

• Latency (time for each instruction) does not decrease

29

Pipelining and ISA Design

MIPS ISA designed for pipelining

• All instructions are 32-bits

- Easier to fetch and decode in one cycle

- c.f. x86: 1- to 17-byte instructions

• Few and regular instruction formats

- Can decode and read registers in one step

• Load/store addressing

- Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands

- Memory access takes only one cycle

30

Hazards

Situations that prevent starting the next instruction in the next
cycle

Structure hazards

• A required resource is busy

Data hazard

• Need to wait for previous instruction to complete its data
read/write

Control hazard

• Deciding on control action depends on previous instruction

31

Structure Hazards

Conflict for use of a resource

If MIPS pipeline uses a single memory (1 inst/data memory)

• Load/store requires data access

• Instruction fetch would have to stall for that cycle

- Would cause a pipeline "bubble"

Hence, pipelined datapaths require separate instruction/data
memories

• Or separate instruction/data caches

32

Data Hazards

An instruction depends on completion of data access by a previous
instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

33

Forwarding (aka Bypassing)

Use result when it is computed

• Don't wait for it to be stored in a register

• Requires extra connections in the datapath

34

Load-Use Data Hazard

Can't always avoid stalls by forwarding

• If value not computed when needed

• Can't forward backward in time!

35

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

36

Control Hazards

Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can't always fetch correct instruction

- Still working on ID stage of branch

In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage

37

Stall on Branch

Wait until branch outcome determined before fetching next
instruction

38

Branch Prediction

Longer pipelines can't readily determine branch outcome early

• Stall penalty becomes unacceptable

Predict outcome of branch

• Only stall if prediction is wrong

In MIPS pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

39

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

40

More-Realistic Branch Prediction

Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

- Predict backward branches taken

- Predict forward branches not taken

Dynamic branch prediction

• Hardware measures actual branch behavior

- e.g., record recent history of each branch

• Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history

41

Pipeline Summary

Pipelining improves performance by increasing instruction
throughput

• Executes multiple instructions in parallel

• Each instruction has the same latency

Subject to hazards

• Structure, data, control

Instruction set design affects complexity of pipeline
implementation

