
ARITHMETIC FOR COMPUTERS

Jo, Heeseung

2

Arithmetic for Computers

Operations on integers

• Addition and subtraction

• Multiplication and division

• Dealing with overflow

Floating-point real numbers

• Representation and operations

3

Integer Addition

Example: 7 + 6

Overflow if result out of range

• Adding +ve and -ve operands, no overflow

• Adding two +ve operands

- Overflow if result sign is 1

• Adding two -ve operands

- Overflow if result sign is 0

4

Integer Subtraction

Add negation of second operand

Example: 7 - 6 = 7 + (-6)

+7: 0000 0000 … 0000 0111
-6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

Overflow if result out of range

• Subtracting two +ve or two -ve operands, no overflow

• Subtracting +ve from -ve operand

- Overflow if result sign is 0

• Subtracting -ve from +ve operand

- Overflow if result sign is 1

5

Dealing with Overflow

Some languages (e.g., C) ignore overflow

• Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

• Use MIPS add, addi, sub instructions

• On overflow, invoke exception handler

- Save PC in exception program counter (EPC) register

- Jump to predefined handler address

- mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to
return after corrective action

6

Multiplication

Start with long-multiplication approach

1000
× 1001

1000
0000
0000

1000
1001000

Length of product is the
sum of operand lengths

multiplicand

multiplier

product

7

Multiplication Hardware

Initially 0

8

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

9

Division

Check for 0 divisor

Long division approach

• If divisor ≤ dividend bits

- 1 bit in quotient, subtract

• Otherwise

- 0 bit in quotient, bring down
next dividend bit

Signed division

• Divide using absolute values

• Adjust sign of quotient and
remainder as required

1001
1000 1001010

-1000
10
101
1010
-1000

10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

12

Floating Point

Representation for non-integral numbers

• Including very small and very large numbers

Scientific notation

• -2.34 × 1056

• +0.002 × 10-4

• +987.02 × 109

In binary

• ±1.xxxxxxx2 × 2yyyy

Types float and double in C

normalized

not normalized

13

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of representations

• Portability issues for scientific code

Now almost universally adopted

Two representations

• Single precision (32-bit)

• Double precision (64-bit)

14

IEEE Floating-Point Format

S: sign bit (0 non-negative, 1 negative)

Normalize significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

• Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

• Ensures exponent is unsigned

• Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −+−=

15

Floating-Point Example

Represent -0.75

• -0.75 = (-1)1 × 1.12 × 2-1

• S = 1

• Fraction = 1000…002

• Exponent = -1 + Bias

- Single: -1 + 127 = 126 = 011111102

- Double: -1 + 1023 = 1022 = 011111111102

Single: 1011111101000…00

Double: 1011111111101000…00

S Exponent Fraction

16

Floating-Point Example

What number is represented by the single-precision float

11000000101000…00

• S = 1

• Fraction = 01000…002

• Exponent = 100000012 = 129

x = (-1)1 × (1 + 012) × 2(129 - 127)

= (-1) × 1.25 × 22

= -5.0

S Exponent Fraction

17

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

• Exponent: 00000001
 actual exponent = 1 - 127 = -126

• Fraction: 000…00 significand = 1.0

• ±1.0 × 2-126 ≈ ±1.2 × 10-38

Largest value

• exponent: 11111110
 actual exponent = 254 - 127 = +127

• Fraction: 111…11 significand ≈ 2.0

• ±2.0 × 2+127 ≈ ±3.4 × 10+38

S Exponent Fraction

18

Double-Precision Range

Exponents 0000…00 and 1111…11 reserved

Smallest value

• Exponent: 00000000001
 actual exponent = 1 - 1023 = -1022

• Fraction: 000…00 significand = 1.0

• ±1.0 × 2-1022 ≈ ±2.2 × 10-308

Largest value

• Exponent: 11111111110
 actual exponent = 2046 - 1023 = +1023

• Fraction: 111…11 significand ≈ 2.0

• ±2.0 × 2+1023 ≈ ±1.8 × 10+308

S Exponent Fraction

19

Floating-Point Precision

Relative precision

• all fraction bits are significant

• Single: approx 2-23

- Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision

• Double: approx 2-52

- Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

20

Denormal Numbers

Condition: Exponent = 000…0

Cases

• exponent = 000…0, frac = 000…0

- Represents value 0

- Note that have distinct values +0 and -0

• exponent = 000…0, frac 000…0

- Numbers very close to 0.0

Two representations
of 0.0!

0.0=+−= −BiasS 20)(01)(x

21

Infinities and NaNs

Exponent = 111...1, Fraction = 000...0

• ±Infinity

• Operation that overflows

Exponent = 111...1, Fraction ≠ 000...0

• Not-a-Number (NaN)

• Indicates illegal or undefined result

- e.g., 0.0 / 0.0

22

FP Adder Hardware

Much more complex than integer adder

Doing it in one clock cycle would take too long

• Much longer than integer operations

• Slower clock would penalize all instructions

FP adder usually takes several cycles

• Can be pipelined

23

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

FP arithmetic hardware usually does

• Addition, subtraction, multiplication, division, reciprocal,
square-root

• FP integer conversion

Operations usually takes several cycles

• Can be pipelined

24

Interpretation of Data

Bits have no inherent meaning

• Interpretation depends on the instructions applied

Computer representations of numbers

• Finite range and precision

• Need to account for this in programs

25

Right Shift and Division

Left shift by i places multiplies an integer by 2i

Right shift divides by 2i?

• Only for unsigned integers

For signed integers

• Arithmetic right shift: replicate the sign bit

• e.g., -5 / 4

- 111110112 >> 2 = 111111102 = -2

- Rounds toward -infinity (We want to round to 0)

• Logical right shift: fill 0

• c.f. 111110112 >>> 2 = 001111102 = +62 (in Java)

26

Who Cares About FP Accuracy?

Important for scientific code

• But for everyday consumer use?

- "My bank balance is out by 0.0002¢!"

The Intel Pentium FDIV bug

• The market expects accuracy

• See Colwell, The Pentium Chronicles

27

Floating Point Disasters

Intel Ships and Denies Bugs

• In 1994, Intel shipped its first Pentium processors with a
floating-point divide bug

• The bug was due to bad look-up tables used in to speed up quotient
calculations

• After months of denials, Intel adopted a no-questions replacement
policy, costing $300M.

• (http://www.intel.com/support/processors/pentium/fdiv/)

28

Floating Point Disasters

Scud Missiles get through, 28 die

• In 1991, during the 1st Gulf War, a Patriot missile defense system
let a Scud get through, hit a barracks, and kill 28 people

• The problem was due to a floating-point error when taking the
difference of a converted & scaled integer

• (Source: Robert Skeel, "Round-off error cripples Patriot Missile",
SIAM News, July 1992.)

29

Floating Point Disasters

$7B Rocket crashes (Ariane 5)

• When the first ESA Ariane 5 was launched on June 4, 1996, it lasted
only 39 seconds, then the rocket veered off course and self-
destructed

• An inertial system, produced a floating-point exception while
trying to convert a 64-bit floating-point number to an integer

• Ironically, the same code was used in the Ariane 4, but the larger
values were never generated

• (http://www.around.com/ariane.html).

http://www.around.com/ariane.html

30

Concluding Remarks

ISAs support arithmetic

• Signed and unsigned integers

• Floating-point approximation to reals

Bounded range and precision

• Operations can overflow and underflow

