Arithmetic for Computers

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

Integer Addition

Example: 7 + 6

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands
- Overflow if result sign is 0

Integer Subtraction

Add negation of second operand
Example: 7 - 6 = 7 + (-6)

$$
\begin{aligned}
& \text { +7: } 00000000 . . .00000111 \\
& \text {-6: } 11111111 . . .11111010 \\
& \hline+1: 00000000 . . .00000001
\end{aligned}
$$

Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler
- Save PC in exception program counter (EPC) register
- Jump to predefined handler address
- mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Multiplication

Start with long-multiplication approach

multiplicand	
multiplier	1000
	1001
product	

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

Division

Check for 0 divisor
Long division approach

- If divisor s dividend bits
- 1 bit in quotient, subtract
- Otherwise
- 0 bit in quotient, bring down next dividend bit
Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

n-bit operands yield n-bit quotient and remainder

Floating Point

Representation for non-integral numbers

- Including very small and very large numbers

Scientific notation

- -2.34×10^{56}
- $+0.002 \times 10^{-4}$
- $+987.02 \times 10^{9}$

In binary

- $\pm 1 . x x x x x x x_{2} \times 2^{\text {yyyy }}$

Types float and double in C

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

\[

\]

S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
Normalize significand: $1.0 \leq$ |significand| < 2.0

- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1203

Floating-Point Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$

S	Exponent

Fraction

- $S=1$
- Fraction $=1000 . . .00_{2}$
- Exponent $=-1+$ Bias
- Single: $-1+127=126=0111110_{2}$
- Double: $-1+1023=1022=0111111110_{2}$

Single: 1011111101000...00
Double: 1011111111101000...00

Floating-Point Example

What number is represented by the single-precision float

11000000101000... 00

S	Exponent	Fraction

- $S=1$
- Fraction = 01000...002
- Exponent $=10000001_{2}=129$

$$
\begin{aligned}
x & =(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

S	Exponent	Fraction

- Exponent: 00000001
\Rightarrow actual exponent $=1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$

Largest value

- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved

Smallest value

S	Exponent	Fraction

- Exponent: 00000000001
\Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
- $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$

Largest value

- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: 111... $11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}
- Equivalent to $23 \times \log _{18} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
- Double: approx 2^{-52}
- Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Denormal Numbers

Condition: Exponent = 000... 0
Cases

- exponent $=000 . . .0$, frac $=000 . . .0$
- Represents value 0
- Note that have distinct values +0 and -0

$$
x=(-1)^{S} \times(0+0) \times 2^{- \text {Bias }}= \pm 0.0
$$

- exponent $=000 . .0$, frac $\neq 000 . . .0$
- Numbers very close to 0.0

Infinities and NaNs

Exponent $=111 . . .1$, Fraction $=000 . . .0$

- \pm Infinity
- Operation that overflows

Exponent $=111 . . .1$, Fraction $\neq 000 . . .0$

- Not-a-Number (NaN)
- Indicates illegal or undefined result
- e.g., 0.0 / 0.0

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Arithmetic Hardware
FP multiplier is of similar complexity to FP adder
FP arithmetic hardware usually does

- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

Interpretation of Data

Bits have no inherent meaning

- Interpretation depends on the instructions applied

Computer representations of numbers

- Finite range and precision
- Need to account for this in programs

Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}

Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
$-11111011_{2} \gg 2=11111110_{2}=-2$
- Rounds toward -infinity (We want to round to 0)
- Logical right shift: fill 0
- c.f. 11111011_{2} >>> $2=00111110_{2}=+62$ (in Java)

Who Cares About FP Accuracy?

Important for scientific code

- But for everyday consumer use?
- "My bank balance is out by 0.0002ф!" ©

The Intel Pentium FDIV bug

- The market expects accuracy
- See Colwell, The Pentium Chronicles

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994, including the New York Times, San Jose Mercury News, San Francisco Chronicle, and Infoworld. The Pentium floating-point divide bug even made the "Top 10 List" of the David Letterman Late Show on television. Intel eventually took a $\$ 300$ million write-off to replace the buggy chips.

Floating Point Disasters

Intel Ships and Denies Bugs

- In 1994, Intel shipped its first Pentium processors with a floating-point divide bug
- The bug was due to bad look-up tables used in to speed up quotient calculations
- After months of denials, Intel adopted a no-questions replacement policy, costing $\$ 300 \mathrm{M}$.
- (http://www.intel.com/support/processors/pentium/fdiv/)

[^0]
Floating Point Disasters

Scud Missiles get through, 28 die

- In 1991, during the 1st Gulf War, a Patriot missile defense system let a Scud get through, hit a barracks, and kill 28 people
- The problem was due to a floating-point error when taking the difference of a converted \& scaled integer
- (Source: Robert Skeel, "Round-off error cripples Patriot Missile", SIAM News, July 1992.)

Floating Point Disasters

\$7B Rocket crashes (Ariane 5)

- When the first ESA Ariane 5 was launched on June 4 , 1996, it lasted only 39 seconds, then the rocket veered off course and selfdestructed
- An inertial system, produced a floating-point exception while trying to convert a 64-bit floating-point number to an integer
- Ironically, the same code was used in the Ariane 4, but the larger values were never generated
- (http://www.around.com/ariane.html).

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow

[^0]: A 3-D plot of the ratio 4195835/3145727 calculated on a Pentium with FDIV
 bug. The depressed triangular areas indicate where incorrect values have been computed. The correct values all would round to 1.3338 , but the returned values are 1.3337, an error in the fifth significant digit. Byte Magazine, March 1995.

