
Virtual Memory II

Jo, Heeseung



2

Today's Topics

How to reduce the size of page tables?

How to reduce the time for address translation?



3

Page Tables

Space overhead of page tables

• The size of the page table for a 32-bit address space with 4KB 
pages = about 4MB (per process)

• For example 

- Virtual address: 32 bits (4G), Page size: 4KB (=212)

- Page table entries: 220, 4bytes/PTE

How can we reduce this overhead?

• Observation: Only need to map the portion of the address space 
actually being used

- Tiny fraction of entire address space

How do we only map what is being used?

• Make the page table structure dynamically extensible

- Linked list or tree?

• Use another level of indirection:

- Two-level, hierarchical, hashed, etc.



4

Two-level Page Tables (1)



5

Two-level Page Tables (2)

Two-level page tables

• Virtual addresses have 3 parts:

• Master page table

- master page number -> secondary page table

• Secondary page table

- secondary page number -> page frame number

Master page # Secondary page # Offset



6

Two-level Page Tables (3)

Example

• 32-bit address space, 4KB pages, 4bytes/PTE

• Want master page table in one page (4KB)

Master page # Secondary page # Offset

1210 10

Page frame Offset

Page frame N

…

Page frame 6

Page frame 5

Page frame 4

Page frame 3

Page frame 2

Page frame 1

Page frame 0
Master 

page table

Secondary page table

Physical memory

Physical address



7

Multi-level Page Tables

Address translation in Alpha AXP Architecture

• Three-level page tables

• 64-bit address divided
into 3 segments

- seg0 (0x): user code

- seg1 (11): user stack

- kseg (10): kernel

• Alpha 21064

- Page size: 8KB

- Virtual address: 43bits

- Each page table is
one page long



8

Hashed Page Tables (1)

Example



9

Hashed Page Tables (2)

Hashed page tables

• Virtual page number is hashed into the hash table

• Each hash table entry contains a linked list of elements that hash 
to the same location (in case of collision)

• Each elements contains:

- The virtual page number 

- The value of the mapped page frame

- A pointer to the next element in the linked list



10

Hashed Page Tables (3)

Clustered page tables

• A variant of hash page tables

• Each entry stores mapping information for a block of consecutive 
page tables

Virtual Page Block Number Block offset Offset

hash

VPBN

next

PPN0

PPN1

PPN2

PPN3

VPBN

next

PPN0

PPN1

PPN2

PPN3
Hash table

Virtual address



11

Inverted Page Tables (1)

Example



12

Inverted Page Tables (2)

Inverted page tables

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that 
real memory location

- With information about the process that owns that page

• Have to manage PID

• Decreases memory needed to store each page table

• Increases time needed to search the table when a page reference 
occurs

• Use hash table to limit the search to one, or at most a few, page-
table entries



13

Paging Page Tables

Addressing page tables

• Where are page tables stored? (and which address space?)

• (1) Physical memory

- Easy to address, no translation required

- But, allocated page tables consume memory for lifetime of VAS

• (2) Virtual memory (OS virtual address space)

- Cold (unused) page table pages can be paged out to disk

- But, addressing page tables requires translation

- Do not page the outer page table (called wiring)

• Now we've paged the page tables, might as well page the entire OS 
address space, too

- Need to wire special code and data (e.g., interrupt and exception 
handlers)



15

TLBs (1)

Let's make address translation efficient

Original page table scheme doubled the cost of memory lookups

• One lookup into the page table, another to fetch the data

Two-level page tables triple the cost!

• Two lookups into the page tables, a third to fetch the data

• This assumes the page table is in memory

- If not, the overhead can be larger

How can we make this more efficient?

• Goal: make fetching from a virtual address as efficient as fetching 
from a physical address

• Cache the virtual-to-physical translation in hardware

• Translation Lookaside Buffer (TLB, hardware)

- TLB managed by the Memory Management Unit (MMU, hardware)



16

TLBs (2)

Translation Lookaside Buffers

• Translate virtual page numbers into PTEs

• Can be done in a single machine cycle



17

TLBs (3)

TLB is implemented in hardware

• Fully associative cache (all entries looked up in parallel)

• Cache tags are virtual page numbers

• Cache values are PTEs (entries from page tables)

• With PTE+offset, MMU can directly calculate the physical address

TLBs exploit locality

• Processes only use a handful of pages at a time

- 16-48 entries in TLB is typical (64-192KB)

- Can hold the "hot set" or "working set" of process

• Hit rates are therefore really important



18

Hardware Cache



19

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

#Blocks is a 
power of 2

Use low-order 
address bits



20

Associative Cache Example



21

How Much Associativity

Increased associativity decreases miss rate

• But with diminishing response time

Simulation of a system with 64KB D-cache, 16-word blocks, SPEC2000

• 1-way: 10.3%

• 2-way: 8.6%

• 4-way: 8.3%

• 8-way: 8.1%



22

Translation Using a Page Table



23

Mapping Pages to Storage



24

Fast Translation Using a TLB



25

TLBs (4)

Address translation with TLB



26

TLBs (5)

Address translations are mostly handled by the TLB

• More than 99% of translations

• But there are TLB misses occasionally (1%)

Handling TLB misses

• In case of a miss, who places translations into the TLB?

• Hardware (MMU): Intel x86

- Knows where page tables are in memory

- HW access them directly

- Page tables have to be in hardware-defined format

• Software loaded TLB (OS)

- TLB miss faults to OS, OS finds right PTE and loads TLB

· Must be fast (but, 20-200 cycles typically)

· CPU ISA has instructions for TLB manipulation

- Page tables can be in any format convenient for OS (flexible)



27

TLBs (6)

Managing TLBs

• OS ensures that TLB and page tables are consistent

- Something is changed in page tables, 
the TLB entry should be invalidated

• Reload TLB on a process context switch

- Remember, each process typically has its own page tables

- Need to invalidate all the entries in TLB (flush TLB)

- In IA-32, TLB is flushed automatically 
when the contents of CR3 (page directory base register) is changed

- (cf.) Alternatively, we can store the PID as part of the TLB entry, but 
this is expensive

• When the TLB misses, and a new PTE is loaded, a cached PTE must be 
evicted

- Choosing a victim PTE called the "TLB replacement policy"

- Implemented in hardware, usually simple (e.g., LRU)



28

Memory

Memory Reference (1)

Situation

• Process is executing on the CPU, and it issues a read to a virtual 
address

TLB
VA

PATLB hit

Page
tables

TLB miss

PTE
data



29

Memory Reference (2)

The common case (TLB hits, more than 99%)

• The read/write goes to the TLB in the MMU

• TLB does a lookup using the page number of the address

• The page number matches, returning a PTE

• TLB validates that the PTE protection allows reads/writes

• PTE specifies which physical frame holds the page

• MMU combines the physical frame and offset into a physical address

• MMU then reads from that physical address, returns value to CPU



30

Memory Reference (3)

TLB misses: two implementation choices

• (1) MMU loads PTE from page table in memory

- Hardware managed TLB, OS not involved in this step

· OS has already set up the page tables so that the hardware can access it 
directly

• (2) Trap to the OS

- Software managed TLB, OS intervenes at this point

· OS does lookup in page tables, loads PTE into TLB

· OS returns from exception, TLB continues

• After handling TLB misses, there is a valid PTE for the address in 
the TLB

• So the requested address is referred as a TLB hit case



31

Memory Reference (4)

TLB misses: recursive fault

• Page table lookup (by HW or OS) can cause a recursive fault if page 
table is paged out

- Assuming page tables are in OS virtual address space

- Page fault handler loads page table into physical memory

- Load PTE into TLB

• When TLB has PTE, it restarts translation

- Common case is that the PTE refers to a valid page in memory

- Uncommon case is that TLB faults again on PTE

· e.g., page is invalid



32

Memory Reference (5)

Page faults

• PF can be two cases

- Read/Write/Execute - operation not permitted on page (protection fault)

- Invalid - virtual page not allocated, or page not in physical memory

• TLB traps to the OS (software takes over)

- Read/Write/Execute - OS usually will send fault back to the process, or 
might be playing tricks 

· e.g., copy on write, mapped files

- Invalid (Not allocated) - OS sends fault to the process 

- Invalid (Not in physical memory) - OS allocates a frame, reads from disk, 
and maps PTE to physical frame (page fault handling)



34

Memory Reference Summary

1. TLB hit
- Frame is in memory
- Frame PF (generally not possible)

2. TLB miss - page table is in memory
- Update TLB, restart
- Frame is in memory / Frame PF

3. TLB miss - page table is paged out (PF)
- PF handler for page table
- Update TLB, restart
- Frame is in memory / Frame PF


