CPU Scheduling

Jo, Heeseung

I Today's Topics

General scheduling concepts
Scheduling algorithms

Case studies

I CPU Scheduling (1)

CPU scheduling

e Deciding which process to run next, given a set of runnable
processes

 Happens frequently, hence should be fast

Scheduling points

terminated

0.)
3
e @
D
(e I
—
e 2
N
[g
k
—t
D
x.
‘

W coroii i

/O or event completlon scheduler dispatch

I/O or event wait

I CPU Scheduling (2)

Scheduling algorithm goals
« All systems

- No starvation

- Fairness: giving each process a fair share of the CPU

- Balance: keeping all parts of the system busy
 Batch systems

- Throughput: maximize jobs per hour

- Turnaround time: minimize time between submission and termination

- CPU utilization: keep the CPU busy all the time
 Interactive systems

- Response time: respond to requests quickly
e Real-time systems

- Meeting deadlines: avoid losing data

- Predictability: avoid quality degradation in multimedia system

B CPU Scheduling (3)

Starvation

« A situation where a process is prevented from making progress
because another process has the resource it requires

- Resource could be the CPU or a lock
« A poor scheduling policy can cause starvation

- If a high-priority process always prevents a low-priority process from
running on the CPU

* Synchronization can also cause starvation

- One thread always beats another when acquiring a lock

I CPU Scheduling (4)

Non-preemptive scheduling

e The scheduler waits for the running job to voluntarily yield the
CPU

e Jobs should be cooperative

Preemptive scheduling
 The scheduler can interrupt a job and force a context switch

 What happens
- If a process is preempted in the midst of updating the shared data?

- If a process in a system call is preempted?

I Execution Characteristics (1)

CPU burst vs. I/0 burst
« A CPU-bound process

e An I/0-bound process

@ | —— — ——

/

Long CPU burst

Waiting for I/O

Short CPU burst \
// _
L

1 I I I 1 I 1 1
(b) E - U u | | I L

n
U

-

Time

Execution Characteristics (2)

Histogram of CPU-burst Times
« Most are short CPU burst
 Rarely long CPU burst

 Reference for CPU scheduling algorithm design

A

160 |-

140 |-

120 |-

100

80

frequency

60

40 |

20 |-

!
16 24 32
burst duration (milliseconds)

I Process State Queues

: ready queue CPU
I/O queue «— |/O request |[&—
time slice :
expired

iInterrupt wait for an
OCCUrs interrupt

child fork a
@ child)

§ FCFS/FIFO

First-Come, First-Served / First-In, First-Out
e Jobs are scheduled in order that they arrive
 "Real-world" scheduling of people in lines

- e.9g., supermarket, bank tellers, McDonalds, etc.
« Typically, non-preemptive
« Jobs are treated equally: no starvation
Problems

 Average waiting time can be large if small jobs wait behind long
ones

- Basket vs. cart

« May lead to poor overlap of I/0 and CPU

10

§ FCFS/FIFO

First-Come, First-Served / First-In, First-Out

i FIFO
Process ArTr.lval Burst
ne P, P, P Py
Pro 0.0 T - | |
Pz 5.0 4 0 7 9 12 16
P3 4.0 1
P4 5.0 4

12

 SIF

Shortest Job First
e Choose the job with the smallest expected CPU burst
e Can prove that SJF has optimal min. average waiting time
- Only when all jobs are available simultaneously
* Non-preemptive
Problems
« Impossible to know the size of future CPU burst
 Can you make a reasonable guess?

« Can potentially starve

13

§ SRTF

Shortest Remaining Time First
 Preemptive version of SJF

« If a new process arrives, rethink preemption

- With CPU burst length less than remaining time of current executing
process, preempt

- F
Process ArTr.lval Burst >
ne P, P P, Py

P00 7| e e

P, 2.0 4 0 7 8 12 SRTF16

P, 40 1

P, | P, [Py P p p
P 50 4 0 G A
0 2 4 5 7 11 16

14

d RR

Round Robin

Ready Q is treated as a circular FIFO Q

Each job is given a time slice (or time quantum)
- Usually 10-100 ms

Great for timesharing
- No starvation

- Typically, higher average turnaround time than SJF, but better response
time

Preemptive

What do you set the quantum to be?

- A rule of thumb: 80% of the CPU bursts should be shorter than the time
quantum

- Longer quantum : Higher throughput

- Shorter quantum : Shorter response

Treats all jobs equally

15

I Example of RR with Time Quantum

= 4
Process Art}val Burst
Time
fy 0.0 24
P, 1.0 3
F} 2.0 7/
P, P, P, P, P; P, P, P, P,

16

I Example of RR with Time Quantum

= 4
Process Arr.1va1 Burst
Time
PJ 0.0 24
Pz 1.0 5
P3 2.0 7/
Pl P2 P3 P1 P2 P3 Pl Pl Pl Pl
0 8 12 16 17 20 24 28 32 36

17

I Exercise

FCFS

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

18

I Exercise

SJF

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

19

I Exercise

SRTF

Process ArTriimveal Burst
P, 0.0 3
P, 1.0 5
P, 2.0 7
P, 5.0 6
Ps 6.0 3

20

I Exercise

RR (Q = 4)

Process Arh;val Burst
Time
P, 0.0 3
P, 1.0 5
Ps 2.0 7/
P, 5.0 6
Ps 6.0 3
I N I A N I |
T 1 1 T |]
10 15

21

I Exercise

RR (Q = 5)

Process Arh;val Burst
Time
P, 0.0 3
P, 1.0 5
Ps 2.0 7/
P, 5.0 6
Ps 6.0 3
I N I A N I |
T 1 1 T |]
10 15

22

I Priority Scheduling (1)

Priority scheduling

Choose job with highest priority to run next

SJF = Priority scheduling, where
priority = expected length of CPU burst

Round-robin or FIFO within the same priority
Can be either preemptive or non-preemptive
Priority 1is dynamically adjusted

Modeled as a Multi-level Feedback Queue (MLFQ)

23

I Priority Scheduling (2)

Starvation problem

« If there is an endless supply of high priority jobs, no low
priority job will ever run

Solution: Aging
« Increase priority as a function of wait time
 Decrease priority as a function of CPU time

 Many ugly heuristics have been explored in this area

24

I Priority Scheduling (3)

Priority inversion problem

e« A situation where a higher-priority job
is unable to run because a lower-priority job

:
ey S

is holding a resource it needs, such as a lock pathfinder, 1997
Bus management priority inversion -:
task : : |
| |
I ' I
communications ' : l !
L 1 . 1 |
task l | ; | . |
| | |
meteorological data -
gathering task
v lock_acquire() lock_release()

Low Priority

« What really happened on Mars? - google search

25

http://en.wikipedia.org/wiki/File:Sojourner_on_Mars_PIA01122.jpg

I Priority Scheduling (4)

Priority inheritance protocol (PIP)

e The higher-priority job can donate its priority to the lower-
priority job holding the resource it requires

Priority ceiling protocol (PCP)

 The priority of the low-priority thread is raised immediately when
it gets the resource

 The priority ceiling value must be predetermined

26

I Priority Scheduling (5)

Multilevel Feedback Queue

Multilevel queue scheduling, which allows a job to move between the
various queues

Queues have priorities
- Batch, interactive, system, CPU-bound, I/0-bound, ..

When a process uses too much CPU time, move to a lower-priority
queue

- Aging
- Leaves I/0-bound and interactive processes in the higher-priority queues

When a process waits too long in a lower priority queue, move to a
higher-priority queue

- Prevents starvation

27

I Multilevel Queue Scheduling

A process can move between the various queues

e Aging can be implemented this way

highest priority

m— system processes
— interactive processes
> interactive editing processes
m— batch processes
— student processes

lowest priority

I Example of Multilevel Feedback Queue

Three queues:

e Q0 - RR with time quantum
8 milliseconds

« Q1 - RR time quantum
16 milliseconds

* Q2 - FCFS
Scheduling

L 7

A 4

Qo

> guantum = 8
Q1

> quantum = 16
Q2 _

o
Lz

FCES

Y

« A new job enters queue Q@ which is served FCFS

- When it gains CPU, job receives 8 milliseconds

- If 1t does not finish in 8 milliseconds, job is moved to queue Q1

« At Q1 job is again served FCFS and receives 16 additional
milliseconds

- If it still does not complete, it is preempted and moved to queue Q2

I UNIX Scheduler (1)

Characteristics

 Preemptive

e Priority-based
- The process with the highest priority always runs
- 3 - 4 classes spanning ~170 priority levels (Solaris 2)
- @ - 39 priority levels (Linux)

e Time-shared (based on RR)
- Based on timeslice (or quantum)

e MLFQ (Multi-Level Feedback Queue)
- Priority scheduling across queues, RR within a queue

- Processes dynamically change priority

30

UNIX Scheduler (2)

General principles
 Favor I/0-bound processes over CPU-bound processes

- I/0-bound processes typically run using short CPU bursts

- Provide good interactive response

Don't want editor to wait until CPU hog finishes quantum
- CPU-bound processes should not be severely affected
« No starvation

- Use aging

31

