
Threads Implementation

Jo, Heeseung



2

Today's Topics

How to implement threads?

• User-level threads

• Kernel-level threads



3

Which one is the fastest?

Get factorial value of N

• iterative factorial

• recursive factorial

local function

• myswap()

library function

• strcpy()

system call

• getpid()



4

Kernel/User-level Threads

Who is responsible for creating/managing threads?

• The OS (kernel-level threads)

- Thread creation and management requires system calls

• The user-level process (user-level threads)

- A library linked into the program manages the threads

Why is user-level thread management possible?

• Threads share the same address space

- The thread manager doesn't need to manipulate address spaces

• Threads only differ in hardware contexts (roughly)

- PC, SP, registers

- These can be manipulated by the user-level process itself



5

Kernel-level Threads (1)

OS-managed threads

• The OS manages threads and processes

• All thread operations are implemented in the kernel

• The OS schedules all of the threads in a system

- If one thread in a process blocks (e.g., on I/O), the OS knows about it, 
and can run other threads from that process

- Possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes

- Less state to allocate and initialize

• Windows 98/NT/2000/XP/Vista, Solaris, Tru64 Unix, Linux, Mac OS X



6

Kernel-level Threads (2)

Limitations

• They can still be too expensive

- For fine-grained concurrency, we need even cheaper threads

- Ideally, we want thread operations as fast as a procedure call

• Thread operations are all system calls

- The program must cross an extra protection boundary on every thread 
operation

- Even when the processor is being switched between threads in the same 
address space

- The OS must perform all of the usual argument checks

• Must maintain kernel state for each thread

- Can place limit on the number of simultaneous threads

- In Linux, 256430 (/proc/sys/kernel/threads-max)

• Kernel-level threads have to be general to support the needs of all 
programmers, languages, runtime systems, etc.



7

Implementing Kernel-level Threads

Kernel-level threads

• Kernel-level threads 
are similar to original 
process management and 
implementation



8

User-level Threads (1)

Motivation

• To make threads cheap and fast, they need to be implemented at the 
user level

• Portable: User-level threads are managed entirely by the runtime 
system (user-level library)

User-level threads are small and fast

• Each thread is represented simply by a PC, registers, a stack, and 
a small thread control block (TCB)

• Creating a thread, switching between threads, and synchronizing 
threads are done via procedure calls (No kernel involvement)

• User-level thread operations can be 10-100x faster than kernel-
level threads



9

Implementing User-level Threads (1)

User-level threads

Kernel thread



10

Implementing User-level Threads (2)

Thread context switch

• Very simple for user-level threads

• Save context of currently running thread
: push all machine state onto its stack

• Restore context of the next thread
: pop machine state from next thread's stack

• The next thread becomes 
the current thread

• Return to caller as the new thread
: execution resumes at PC 
of next thread



11

User-level Threads (2)

Limitations

• User-level threads are invisible to the OS

- They are not well integrated with the OS

• As a result, the OS can make poor decisions

- Scheduling a process with only idle threads

- Blocking a process whose thread initiated I/O, even though the process 
has other threads that are ready to run

- Unscheduling a process with a thread holding a lock

• Solving this requires coordination between the kernel and the user-
level thread manager

- e.g., all blocking system calls should be emulated in the library via 
non-blocking calls to the kernel



12

Implementing User-level Threads (3)

Thread scheduling

• A thread scheduler determines when a thread runs

- Just like the OS and processes

- But implemented at user-level as a library

• Queues to keep track of what threads are doing

- Run queue: threads currently running

- Ready queue: threads ready to run

- Wait queue: threads blocked for some reason
(maybe blocked on I/O or a lock)

• How can we prevent a thread from hogging the CPU?



13

Implementing User-level Threads (4)

Non-preemptive scheduling

• Force everybody to cooperate

- Threads willingly give up the CPU by calling yield()

• yield() calls into the scheduler, which context switches to another 
ready thread

• What happens if a thread never calls yield()?

Thread ping ()
{
while (1) {
printf ("ping\n");
yield();

}
}

Thread pong ()
{
while (1) {
printf ("pong\n");
yield();

}
}



14

Implementing User-level Threads (5)

Preemptive scheduling

• Need to regain control of processor asynchronously

• Scheduler requests that a timer interrupt be delivered by the OS 
periodically

- Usually delivered as a UNIX signal

- Signals are just like software interrupts, but delivered to user-level 
by the OS instead of delivered to OS by hardware

• At each timer interrupt, scheduler gains control and context 
switches as appropriate



18

Case study : Go Lang

3rd Language to learn (2020)

Go is developed for Google infra structure

• Before Go, C++ is used

• C++ is fast, but every day code update, complex, long long build 
time



19

Case study : Go Lang

Pros

• Low memory consumption : 2KB stack

• Cheap creation and deletion of threads

- goroutine : user-level thread (green thread)

• Cheap context switch cost

Go runtime scheduler

• Started with a Go program

• scheduling goroutine

Scheduler rule 

• Kernel thread is cost, and so minimize them

• High concurrency with many many goroutine

• N goroutine on N cores



20

Case study : Go Lang

G: Goroutine
M: OS thread
P: Logical processor



21

Case study : Go Lang

Scheduler concepts

• Reuse threads

- Unused go thread -> idle state

- After sometime in idle, remove

• Limit threads accessing runqueue

- Max number of threads is 10000 (default, modifiable)

- Accessing local and global run queue needs lock

• Distributed runqueues

- Minimize schedule lock


