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Today's Topics

Why threads? 

Threading issues
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Processes

Heavy-weight

• A process includes many things:

- An address space (all the code and data pages)

- OS resources (e.g., open files) and accounting information

- Hardware execution state (PC, SP, registers, etc.)

• Creating a new process is costly because all of the data structures 
must be allocated and initialized

- Linux: over 100 fields in task_struct
(excluding page tables, etc.)

• Inter-process communication is costly, since it must usually go 
through the OS

- Overhead of system calls and copying data
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Concurrent Servers: Processes

Web server example

• Using fork() to create new processes to handle requests in parallel 
is overkill for such a simple task

while (1) {

int sock = accept();

if ((pid = fork()) == 0) {

/* Handle client request */

} else {

/* Close socket */

}

}
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Cooperating Processes

Example

• A web server, which forks off copies of itself to handle multiple 
simultaneous tasks

• Any parallel program on a multiprocessor

We need to:

• Create several processes that execute in parallel

• Cause each to map the same address space to share data

- e.g., shared memory

• Have the OS schedule these processes in parallel

This is very inefficient!

• Space: PCB, page tables, etc.

• Time: creating OS structures, fork and copy address space, etc.
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Rethinking Processes

What's similar in these cooperating processes?

• They all use (share?) the same code and data (address space)

• They all use the same privilege

• They all use the same resources (files, sockets, etc.)

What's different?

• Each has its own hardware execution state: 
PC, registers, SP, and stack
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Key Idea (1)

Separate the concept of a process from its execution state

• Process: address space, resources, other general process attributes 

- e.g., privileges

• Execution state: PC, SP, registers, etc.

• This execution state is usually called 

- Thread

- Lightweight process (LWP)

- Thread of control
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Key Idea (2)
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Key Idea (3)

Each thread has its own stack
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Key Idea (4)

Each thread has its own stack
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What is a Thread?

A thread of control (or a thread)

• A sequence of instructions being executed in a program

• Usually consists of

- A program counter (PC), general registers

- A stack to keep track of local variables and return addresses

• Threads share the process instructions and most of its data

- A change in shared data by one thread can be seen by the other threads 
in the process

• Threads also share most of the OS state of a process
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Concurrent Servers: Threads

Using threads

• We can create a new thread for each request

webserver ()

{

while (1) {

int sock = accept();

create_thread (handle_request, sock);

}

}

handle_request (int sock)

{

/* Process request */

close (sock);

}
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Multithreading

Benefits

• Creating concurrency is cheap

- Time and memory consumption

• Improves program structure

• Higher throughput

- By overlapping computation with I/O operations

• Better responsiveness (User interface / Server)

- Can handle concurrent events (e.g., web servers)

• Better resource sharing

• Utilization of multiprocessor architectures

- Allows building parallel programs
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Processes vs. Threads (1)

Processes vs. Threads

• A thread is bound to a single process

• A process, however, can have multiple threads

• Sharing data between threads is cheap

- All see the same address space

• Threads become the unit of scheduling

• Processes are now containers in which threads execute
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Processes vs. Threads (2)

How threads and processes are similar

• Each has its own logical control flow

• Each can run concurrently with others (possibly on different cores)

• Each is context switched

How threads and processes are different

• Threads share code and some data

- Processes (typically) do not - use the same code and data copies

• Threads are somewhat less expensive than processes

- Process control (creating and reaping) is twice as expensive as thread 
control

- Linux numbers:
~20K cycles to create and reap a process
~10K cycles (or less) to create and reap a thread
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Process Address Space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamically allocated mem)

stack
(dynamically allocated mem)

PC

SP
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Address Space with Threads

0x00000000

0xFFFFFFFF

address space

PC (T2)

SP (T2)

code

(text segment)

static data

(data segment)

heap

(dynamically allocated mem)

thread 1 stack

thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)

PC (T3)
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Classification

# of addr
spaces

# threads
per addr
space

One Many

One
· MS-DOS
· Early Macintosh

· Traditional UNIX

Many
· Many embedded OSes
· VxWorks
· uClinux

· Mach
· OS/2
· Linux
· Windows
· Mac OS X
· Solaris
· HP-UX
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Threads Interface (1)

pthreads

• A POSIX standard (IEEE 1003.1c) API for thread creation and 
synchronization

• API specifies behavior of the thread library

• Implementation is up to development of the library

• Common in UNIX operating systems
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Threads Interface (2)

POSIX-style threads

• pthreads

• DCE threads (early version of pthreads)

• Unix International (UI) threads (Solaris threads)

- Sun Solaris 2, SCO Unixware 2

Microsoft-style threads

• Win32 threads

- Microsoft Windows 98/NT/2000/XP

• OS/2 threads

- IBM OS/2
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pthreads (1)

Thread creation/termination

int pthread_create (pthread_t *tid, 
pthread_attr_t *attr,
void *(start_routine)(void *),
void *arg);

void pthread_exit (void *retval); 

int pthread_join (pthread_t tid, 
void **thread_return); 
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The Pthreads "hello, world" Program

#include <stdio.h>
#include <pthread.h>

void *threadfunc(void *vargp);

/* thread routine */
void *threadfunc(void *vargp) {
sleep(1);
printf("Hello, world!\n");
return NULL;

}

int main() {
pthread_t tid;

pthread_create(&tid, NULL, threadfunc, NULL);
printf("main\n");
pthread_join(tid, NULL);
printf("main2\n");
sleep(2);
return 0;

}

# gcc ex.c -lpthread
# ./a.out
main
Hello, world!
main2
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pthreads (2)

Mutexes

int pthread_mutex_init
(pthread_mutex_t *mutex, 
const pthread_mutexattr_t *mattr);

void pthread_mutex_destroy
(pthread_mutex_t *mutex); 

void pthread_mutex_lock
(pthread_mutex_t *mutex); 

void pthread_mutex_unlock
(pthread_mutex_t *mutex); 
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Threads using shared data

#include <pthread.h>
#define MAX_THREAD 20

void *threadcount(void *data) {
int *count = (int *)data;
int i;
pthread_t thread_id = pthread_self();
for (i=0; i<100; i++) {

*count = *count+1;
}

}
int main(int argc, char **argv) {

pthread_t thread_id[MAX_THREAD];
int i = 0;
int count = 0;
for(i = 0; i < MAX_THREAD; i++) {

pthread_create(&thread_id[i], NULL, threadcount, (void *)&count);
}
for(i = 0; i < MAX_THREAD; i++) {

pthread_join(thread_id[i], NULL);
}
printf("Main Thread : %d\n", count);
return 0;

}

# gcc ex.c -lpthread
# ./a.out
Main Thread : 2000
# ./a.out
Main Thread : 1957
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pthreads (3)

Condition variables

int pthread_cond_init
(pthread_cond_t *cond, 
const pthread_condattr_t *cattr);

void pthread_cond_destroy
(pthread_cond_t *cond); 

void pthread_cond_wait
(pthread_cond_t *cond,
pthread_mutex_t *mutex); 

void pthread_cond_signal
(pthread_cond_t *cond); 

void pthread_cond_broadcast
(pthread_cond_t *cond); 
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Threading Issues (1)

fork() and exec() can be issue

When a thread calls fork()

• Does the new process duplicate all the threads? 

• Is the new process single-threaded?

Some UNIX systems support two versions of fork()

• In pthreads,

- fork() duplicates only a calling thread

• In the Unix international standard,

- fork() duplicates all parent threads in the child

- fork1() duplicates only a calling thread

Normally, exec() replaces the entire process

If a thread call exit()?

If the main thread dies(return, exit()) before child threads?
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Threading Issues (2)

Thread cancellation

• The task of terminating a thread before it has completed

Asynchronous cancellation

• Terminates the target thread immediately

• What happens if the target thread is holding a resource, or it is 
in the middle of updating shared resources?

Deferred cancellation

• The target thread is terminated at the cancellation points

• The target thread periodically check if it should be cancelled

pthreads API supports both asynchronous and deferred cancellation
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Threading Issues (3)

Signal handling

• Where should a signal be delivered?

To the thread to which the signal applies

• for synchronous signals

To every thread in the process

To certain threads in the process

• Typically only to a single thread found in a process that is not 
blocking the signal

• pthreads: per-process pending signals, per-thread blocked signal 
mask

Assign a specific thread to receive all signals for the process

• Solaris 2
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Threading Issues (4)

Using libraries having internal variables

• errno

- #include <errno.h>

- Each thread should have its own independent version of the errno
variable
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Threading Issues (4)

Multithread-safe (MT-safe)

• A set of functions can be said to be multithread-safe or reentrant, 
when the functions may be called by more than one thread at a time

• Functions that access no 
global data or read-only global 
data are trivially MT-safe

• Functions that modify global 
state must be made MT-safe 
by synchronizing access to 
the shared data

Threads can have private 
global variables


