
COMPUTER ARCHITECTURE
REVIEW

COMPUTER ABSTRACTIONS AND TECHNOLOGY

Jo, Heeseung

4

Below Your Program

Hardware

• Processor, memory, I/O controllers

System software

• Compiler: translates HLL code
to machine code

• Operating System: service code

- Handling input/output

- Managing memory and storage

- Scheduling tasks & sharing
resources

Application software

• Written in high-level language

5

Levels of Program Code

High-level language

• Level of abstraction closer to
problem domain

• Provides for productivity and
portability

Assembly language

• Textual representation of
instructions

Hardware representation

• Binary digits (bits)

• Encoded instructions and data

6

Components of a Computer

Same components for
all kinds of computer

• Desktop, server, embedded

Input/output includes

• User-interface devices

- Display, keyboard, mouse

• Storage devices

- Hard disk, CD/DVD, flash

• Network adapters

- For communicating with
other computers

ARITHMETIC FOR COMPUTERS

Jo, Heeseung

8

Integer Addition

Example: 7 + 6

Overflow if result out of range

• Adding +ve and -ve operands, no overflow

• Adding two +ve operands

- Overflow if result sign is 1

• Adding two -ve operands

- Overflow if result sign is 0

9

Integer Subtraction

Add negation of second operand

Example: 7 - 6 = 7 + (-6)

+7: 0000 0000 … 0000 0111
-6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

Overflow if result out of range

• Subtracting two +ve or two -ve operands, no overflow

• Subtracting +ve from -ve operand

- Overflow if result sign is 0

• Subtracting -ve from +ve operand

- Overflow if result sign is 1

10

Representation of Negative Numbers

11

Floating Point

Representation for non-integral numbers

• Including very small and very large numbers

Scientific notation

• -2.34 × 1056

• +0.002 × 10-4

• +987.02 × 109

In binary

• ±1.xxxxxxx2 × 2yyyy

Types float and double in C

normalized

not normalized

12

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of representations

• Portability issues for scientific code

Now almost universally adopted

Two representations

• Single precision (32-bit)

• Double precision (64-bit)

13

IEEE Floating-Point Format

S: sign bit (0 non-negative, 1 negative)

Normalize significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

• Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

• Ensures exponent is unsigned

• Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −+−=

14

Floating-Point Example

Represent -0.75

• -0.75 = (-1)1 × 1.12 × 2-1

• S = 1

• Fraction = 1000…002

• Exponent = -1 + Bias

- Single: -1 + 127 = 126 = 011111102

- Double: -1 + 1023 = 1022 = 011111111102

Single: 1011111101000…00

Double: 1011111111101000…00

S Exponent Fraction

15

Floating-Point Example

What number is represented by the single-precision float

11000000101000…00

• S = 1

• Fraction = 01000…002

• Exponent = 100000012 = 129

x = (-1)1 × (1 + 012) × 2(129 - 127)

= (-1) × 1.25 × 22

= -5.0

S Exponent Fraction

16

Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

• Exponent: 00000001
 actual exponent = 1 - 127 = -126

• Fraction: 000…00 significand = 1.0

• ±1.0 × 2-126 ≈ ±1.2 × 10-38

Largest value

• exponent: 11111110
 actual exponent = 254 - 127 = +127

• Fraction: 111…11 significand ≈ 2.0

• ±2.0 × 2+127 ≈ ±3.4 × 10+38

S Exponent Fraction

17

Double-Precision Range

Exponents 0000…00 and 1111…11 reserved

Smallest value

• Exponent: 00000000001
 actual exponent = 1 - 1023 = -1022

• Fraction: 000…00 significand = 1.0

• ±1.0 × 2-1022 ≈ ±2.2 × 10-308

Largest value

• Exponent: 11111111110
 actual exponent = 2046 - 1023 = +1023

• Fraction: 111…11 significand ≈ 2.0

• ±2.0 × 2+1023 ≈ ±1.8 × 10+308

S Exponent Fraction

THE PROCESSOR

Jo, Heeseung

19

Instruction Set

The repertoire of instructions of a computer

Different computers have different instruction sets

• But with many aspects in common

Early computers had very simple instruction sets

• Simplified implementation

Many modern computers also have simple instruction sets

20

Translation and Startup

Many compilers produce object
modules directly

Static
linking

21

CPU Overview

How to make a better CPU?

22

Pipelining Analogy

Pipelined laundry: overlapping execution

• Parallelism improves performance

Four loads:

• Speedup
= 8/3.5 = 2.3

Non-stop:

• Speedup
≈ 4
= number of stages

23

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

24

Hazards

Situations that prevent starting the next instruction in the next
cycle

Structure hazards

• A required resource is busy

Data hazard

• Need to wait for previous instruction to complete its data
read/write

Control hazard

• Deciding on control action depends on previous instruction

25

Structure Hazards

Conflict for use of a resource

If MIPS pipeline uses a single memory (1 inst/data memory)

• Load/store requires data access

• Instruction fetch would have to stall for that cycle

- Would cause a pipeline "bubble"

Hence, pipelined datapaths require separate instruction/data
memories

• Or separate instruction/data caches

26

Data Hazards

An instruction depends on completion of data access by a previous
instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

27

Forwarding (aka Bypassing)

Use result when it is computed

• Don't wait for it to be stored in a register

• Requires extra connections in the datapath

28

Load-Use Data Hazard

Can't always avoid stalls by forwarding

• If value not computed when needed

• Can't forward backward in time!

29

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

30

Control Hazards

Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can't always fetch correct instruction

- Still working on ID stage of branch

In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage

31

Stall on Branch

Wait until branch outcome determined before fetching next
instruction

32

Branch Prediction

Longer pipelines can't readily determine branch outcome early

• Stall penalty becomes unacceptable

Predict outcome of branch

• Only stall if prediction is wrong

In MIPS pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay

33

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

34

More-Realistic Branch Prediction

Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

- Predict backward branches taken

- Predict forward branches not taken

Dynamic branch prediction

• Hardware measures actual branch behavior

- e.g., record recent history of each branch

• Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history

LARGE AND FAST: EXPLOITING MEMORY
HIERARCHY

Jo, Heeseung

36

Memory Technology

Static RAM (SRAM)

• 0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)

• 50ns – 70ns, $20 – $75 per GB

Magnetic disk

• 5ms – 20ms, $0.20 – $2 per GB

Ideal memory

• Access time of SRAM

• Capacity and cost/GB of disk

§5
.
1
I
nt
r
od
u
ct
i
on

37

Registers vs. Memory

Qureshi (IBM Research) et al., Scalable High Performance Main Memory System Using
Phase-Change Memory Technology, ISCA 2009.

38

Principle of Locality

Programs access a small proportion of their address space at any
time

Temporal locality

• Items accessed recently are likely to be accessed again soon

• e.g., instructions in a loop, induction variables

Spatial locality

• Items near those accessed recently are likely to be accessed soon

• E.g., sequential instruction access, array data

39

Taking Advantage of Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk to smaller
DRAM memory

• Main memory

Copy more recently accessed (and nearby) items from DRAM to
smaller SRAM memory

• Cache memory attached to CPU

40

Memory Hierarchy Levels

Block (aka line): unit of copying

• May be multiple words

If accessed data is present in upper level

• Hit: access satisfied by upper level

- Hit ratio: hits/accesses

If accessed data is absent

• Miss: block copied from lower level

- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 - hit ratio

• Then accessed data supplied from upper level

41

Cache Memory

Cache memory

• The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

§5
.
2
T
he

Ba
s
ic
s
 o
f
 C
a
ch
e
s

How do we know if the data
is present?

Where do we look?

42

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

Num. of Blocks is a
power of 2

Use low-order
address bits

43

Tags and Valid Bits

How do we know which particular block is stored in a cache
location?

• Store block address as well as the data

• Actually, only need the high-order bits

• Called the tag

What if there is no data in a location?

• Valid bit: 1 = present, 0 = not present

• Initially 0

44

Address Subdivision

45

Virtual Memory

Use main memory as a "cache" for secondary (disk) storage

• Managed jointly by CPU hardware and the operating system (OS)

Programs share main memory

• Each gets a private virtual address space holding its frequently
used code and data

• Protected from other programs

CPU and OS translate virtual addresses to physical addresses

• VM "block" is called a page

• VM translation "miss" is called a page fault

Virtual address <-> Physical address

(App. view) (Managed by kernel)

§5
.
4
V
ir
t
ua
l
 M
e
mo
r
y

46

Address Translation

Fixed-size pages (e.g., 4K)

47

Page Fault Penalty

Page faults

• Referencing a virtual address
in an evicted page

On page fault, the page must be fetched from disk

• Takes millions of clock cycles

• Handled by OS code

Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms

48

Page Tables

Stores placement information

• Array of page table entries, indexed by virtual page number

• Page table register in CPU points to page table in physical memory

If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

If page is not present

• PTE can refer to location in swap space on disk

49

Translation Using a Page Table

50

Mapping Pages to Storage

51

Fast Translation Using a TLB

Address translation would appear to require extra memory
references

• One to access the PTE

• Then the actual memory access

But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss,
0.01%–1% miss rate

• Misses could be handled by hardware or software

52

Fast Translation Using a TLB

STORAGE AND OTHER I/O TOPICS

Jo, Heeseung

54

Introduction

I/O devices can be characterized by

• Behaviour: input, output, storage

• Partner: human or machine

• Data rate: bytes/sec, transfers/sec

I/O bus connections

§6
.
1
I
nt
r
od
u
ct
i
on

55

Disk Storage

Nonvolatile, rotating magnetic storage

§6
.
3
D
is
k
 S
t
or
a
ge

56

Disk Sectors and Access

Each sector records

• Sector ID

• Data (512 bytes, 4096 bytes proposed)

• Error correcting code (ECC)

- Used to hide defects and recording errors

• Synchronization fields and gaps

Access to a sector involves

• Queuing delay if other accesses are pending

• Seek: move the heads

• Rotational latency

• Data transfer

• Controller overhead

57

Disk Access Example

Given

• 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer
rate, 0.2ms controller overhead, idle disk

Average read time

• 4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time is 1ms

• Average read time = 3.2ms

58

Disk Performance Issues

Manufacturers quote average seek time

• Based on all possible seeks

• Locality and OS scheduling lead to smaller actual average seek
times

Smart disk controller allocate physical sectors on disk

• Present logical sector interface to host

• SCSI, ATA, SATA

Disk drives include caches

• Prefetch sectors in anticipation of access

• Avoid seek and rotational delay

59

Flash Storage

Nonvolatile semiconductor storage

• 100× – 1000× faster than disk

• Smaller, lower power, more robust

• But more $/GB (between disk and DRAM)

§6
.
4
F
la
s
h
S
to
r
ag
e

60

Flash Types

NOR flash: bit cell like a NOR gate

• Random read/write access

• Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate

• Denser (bits/area), but block-at-a-time access

• Cheaper per GB

• Used for USB keys, media storage, …

Flash bits wears out after 1000's of accesses

• Not suitable for direct RAM or disk replacement

• Wear leveling: remap data to less used blocks

61

Solid state drive (SSD)

Architecture of a SSD

62

Solid state drive (SSD)

Architecture of a SSD

63

Solid state drive (SSD)

HDD vs. SSD

64

Solid state drive (SSD)

HDD vs. SSD

65

Interconnecting Components

Need interconnections between

• CPU, memory, I/O controllers

Bus: shared communication channel

• Parallel set of wires for data and synchronization of data
transfer

• Can become a bottleneck

Performance limited by physical factors

• Wire length, number of connections

More recent alternative: high-speed serial connections with
switches

• Like networks

§6
.
5

C
o
n
n
e
c
t
i
n
g

P
r
o
c
e
s
s
o
r
s
,

M
e
m
o
r
y,

an

d
 I

/
O

D
ev

i
ce

s

66

Typical x86 PC I/O System

67

Sun Fire x4150 1U server

4 cores
each

16 x 4GB =
64GB DRAM

