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Below Your Program

Hardware

• Processor, memory, I/O controllers

System software

• Compiler: translates HLL code 
to machine code

• Operating System: service code

- Handling input/output

- Managing memory and storage

- Scheduling tasks & sharing 
resources

Application software

• Written in high-level language
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Levels of Program Code

High-level language

• Level of abstraction closer to 
problem domain

• Provides for productivity and 
portability 

Assembly language

• Textual representation of 
instructions

Hardware representation

• Binary digits (bits)

• Encoded instructions and data
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Components of a Computer

Same components for
all kinds of computer

• Desktop, server, embedded

Input/output includes

• User-interface devices

- Display, keyboard, mouse

• Storage devices

- Hard disk, CD/DVD, flash

• Network adapters

- For communicating with 
other computers
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Integer Addition

Example: 7 + 6

Overflow if result out of range

• Adding +ve and -ve operands, no overflow

• Adding two +ve operands

- Overflow if result sign is 1

• Adding two -ve operands

- Overflow if result sign is 0
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Integer Subtraction

Add negation of second operand

Example: 7 - 6 = 7 + (-6)

+7: 0000 0000 … 0000 0111
-6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

Overflow if result out of range

• Subtracting two +ve or two -ve operands, no overflow

• Subtracting +ve from -ve operand

- Overflow if result sign is 0

• Subtracting -ve from +ve operand

- Overflow if result sign is 1
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Representation of Negative Numbers
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Floating Point

Representation for non-integral numbers

• Including very small and very large numbers

Scientific notation

• -2.34 × 1056

• +0.002 × 10-4

• +987.02 × 109

In binary

• ±1.xxxxxxx2 × 2yyyy

Types float and double in C

normalized

not normalized
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Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of representations

• Portability issues for scientific code

Now almost universally adopted

Two representations

• Single precision (32-bit)

• Double precision (64-bit) 
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IEEE Floating-Point Format

S: sign bit (0  non-negative, 1  negative)

Normalize significand: 1.0 ≤ |significand| < 2.0

• Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit)

• Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

• Ensures exponent is unsigned

• Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −+−=
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Floating-Point Example

Represent -0.75

• -0.75 = (-1)1 × 1.12 × 2-1

• S = 1

• Fraction = 1000…002

• Exponent = -1 + Bias

- Single: -1 + 127 = 126 = 011111102

- Double: -1 + 1023 = 1022 = 011111111102

Single: 1011111101000…00

Double: 1011111111101000…00

S Exponent Fraction
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Floating-Point Example

What number is represented by the single-precision float

11000000101000…00

• S = 1

• Fraction = 01000…002

• Exponent = 100000012 = 129

x = (-1)1 × (1 + 012) × 2(129 - 127)

= (-1) × 1.25 × 22

= -5.0

S Exponent Fraction
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Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value

• Exponent: 00000001
 actual exponent = 1 - 127 = -126

• Fraction: 000…00  significand = 1.0

• ±1.0 × 2-126 ≈ ±1.2 × 10-38

Largest value

• exponent: 11111110
 actual exponent = 254 - 127 = +127

• Fraction: 111…11  significand ≈ 2.0

• ±2.0 × 2+127 ≈ ±3.4 × 10+38

S Exponent Fraction
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Double-Precision Range

Exponents 0000…00 and 1111…11 reserved

Smallest value

• Exponent: 00000000001
 actual exponent = 1 - 1023 = -1022

• Fraction: 000…00  significand = 1.0

• ±1.0 × 2-1022 ≈ ±2.2 × 10-308

Largest value

• Exponent: 11111111110
 actual exponent = 2046 - 1023 = +1023

• Fraction: 111…11  significand ≈ 2.0

• ±2.0 × 2+1023 ≈ ±1.8 × 10+308

S Exponent Fraction
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Instruction Set

The repertoire of instructions of a computer

Different computers have different instruction sets

• But with many aspects in common

Early computers had very simple instruction sets

• Simplified implementation

Many modern computers also have simple instruction sets
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Translation and Startup

Many compilers produce object 
modules directly

Static 
linking
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CPU Overview

How to make a better CPU?
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Pipelining Analogy

Pipelined laundry: overlapping execution

• Parallelism improves performance

Four loads:

• Speedup
= 8/3.5 = 2.3

Non-stop:

• Speedup
≈ 4
= number of stages
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Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)
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Hazards

Situations that prevent starting the next instruction in the next 
cycle

Structure hazards

• A required resource is busy

Data hazard

• Need to wait for previous instruction to complete its data 
read/write

Control hazard

• Deciding on control action depends on previous instruction
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Structure Hazards

Conflict for use of a resource

If MIPS pipeline uses a single memory (1 inst/data memory)

• Load/store requires data access

• Instruction fetch would have to stall for that cycle

- Would cause a pipeline "bubble"

Hence, pipelined datapaths require separate instruction/data 
memories

• Or separate instruction/data caches
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Data Hazards

An instruction depends on completion of data access by a previous 
instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3
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Forwarding (aka Bypassing)

Use result when it is computed

• Don't wait for it to be stored in a register

• Requires extra connections in the datapath
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Load-Use Data Hazard

Can't always avoid stalls by forwarding

• If value not computed when needed

• Can't forward backward in time!
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Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles
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Control Hazards

Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can't always fetch correct instruction

- Still working on ID stage of branch

In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage
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Stall on Branch

Wait until branch outcome determined before fetching next 
instruction
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Branch Prediction

Longer pipelines can't readily determine branch outcome early

• Stall penalty becomes unacceptable

Predict outcome of branch

• Only stall if prediction is wrong

In MIPS pipeline

• Can predict branches not taken

• Fetch instruction after branch, with no delay
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MIPS with Predict Not Taken

Prediction 
correct

Prediction 
incorrect
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More-Realistic Branch Prediction

Static branch prediction

• Based on typical branch behavior

• Example: loop and if-statement branches

- Predict backward branches taken

- Predict forward branches not taken

Dynamic branch prediction

• Hardware measures actual branch behavior

- e.g., record recent history of each branch

• Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history



LARGE AND FAST: EXPLOITING MEMORY
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Memory Technology

Static RAM (SRAM)

• 0.5ns – 2.5ns, $2000 – $5000 per GB

Dynamic RAM (DRAM)

• 50ns – 70ns, $20 – $75 per GB

Magnetic disk

• 5ms – 20ms, $0.20 – $2 per GB

Ideal memory

• Access time of SRAM

• Capacity and cost/GB of disk
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Registers vs. Memory

Qureshi (IBM Research) et al., Scalable High Performance Main Memory System Using 
Phase-Change Memory Technology, ISCA 2009.
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Principle of Locality

Programs access a small proportion of their address space at any 
time

Temporal locality

• Items accessed recently are likely to be accessed again soon

• e.g., instructions in a loop, induction variables

Spatial locality

• Items near those accessed recently are likely to be accessed soon

• E.g., sequential instruction access, array data
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Taking Advantage of Locality

Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby) items from disk to smaller 
DRAM memory

• Main memory

Copy more recently accessed (and nearby) items from DRAM to 
smaller SRAM memory

• Cache memory attached to CPU
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Memory Hierarchy Levels

Block (aka line): unit of copying

• May be multiple words

If accessed data is present in upper level

• Hit: access satisfied by upper level

- Hit ratio: hits/accesses

If accessed data is absent

• Miss: block copied from lower level

- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 - hit ratio

• Then accessed data supplied from upper level
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Cache Memory

Cache memory

• The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn
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Direct Mapped Cache

Location determined by address

Direct mapped: only one choice

• (Block address) modulo (#Blocks in cache)

Num. of Blocks is a 
power of 2

Use low-order 
address bits



43

Tags and Valid Bits

How do we know which particular block is stored in a cache 
location?

• Store block address as well as the data

• Actually, only need the high-order bits

• Called the tag

What if there is no data in a location?

• Valid bit: 1 = present, 0 = not present

• Initially 0
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Address Subdivision
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Virtual Memory

Use main memory as a "cache" for secondary (disk) storage

• Managed jointly by CPU hardware and the operating system (OS)

Programs share main memory

• Each gets a private virtual address space holding its frequently 
used code and data

• Protected from other programs

CPU and OS translate virtual addresses to physical addresses

• VM "block" is called a page

• VM translation "miss" is called a page fault

Virtual address <-> Physical address

(App. view)         (Managed by kernel)
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Address Translation

Fixed-size pages (e.g., 4K)
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Page Fault Penalty

Page faults

• Referencing a virtual address 
in an evicted page

On page fault, the page must be fetched from disk

• Takes millions of clock cycles

• Handled by OS code

Try to minimize page fault rate

• Fully associative placement

• Smart replacement algorithms
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Page Tables

Stores placement information

• Array of page table entries, indexed by virtual page number

• Page table register in CPU points to page table in physical memory

If page is present in memory

• PTE stores the physical page number

• Plus other status bits (referenced, dirty, …)

If page is not present

• PTE can refer to location in swap space on disk



49

Translation Using a Page Table
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Mapping Pages to Storage
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Fast Translation Using a TLB

Address translation would appear to require extra memory 
references

• One to access the PTE

• Then the actual memory access

But access to page tables has good locality

• So use a fast cache of PTEs within the CPU

• Called a Translation Look-aside Buffer (TLB)

• Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 
0.01%–1% miss rate

• Misses could be handled by hardware or software
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Fast Translation Using a TLB
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Introduction

I/O devices can be characterized by

• Behaviour: input, output, storage

• Partner: human or machine

• Data rate: bytes/sec, transfers/sec

I/O bus connections
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Disk Storage

Nonvolatile, rotating magnetic storage
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Disk Sectors and Access

Each sector records

• Sector ID

• Data (512 bytes, 4096 bytes proposed)

• Error correcting code (ECC)

- Used to hide defects and recording errors

• Synchronization fields and gaps

Access to a sector involves

• Queuing delay if other accesses are pending

• Seek: move the heads

• Rotational latency

• Data transfer

• Controller overhead
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Disk Access Example

Given

• 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer 
rate, 0.2ms controller overhead, idle disk

Average read time

• 4ms seek time
+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time is 1ms

• Average read time = 3.2ms
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Disk Performance Issues

Manufacturers quote average seek time

• Based on all possible seeks

• Locality and OS scheduling lead to smaller actual average seek 
times

Smart disk controller allocate physical sectors on disk

• Present logical sector interface to host

• SCSI, ATA, SATA

Disk drives include caches

• Prefetch sectors in anticipation of access

• Avoid seek and rotational delay
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Flash Storage

Nonvolatile semiconductor storage

• 100× – 1000× faster than disk

• Smaller, lower power, more robust

• But more $/GB (between disk and DRAM)
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Flash Types

NOR flash: bit cell like a NOR gate

• Random read/write access

• Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate

• Denser (bits/area), but block-at-a-time access

• Cheaper per GB

• Used for USB keys, media storage, …

Flash bits wears out after 1000's of accesses

• Not suitable for direct RAM or disk replacement

• Wear leveling: remap data to less used blocks
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Solid state drive (SSD)

Architecture of a SSD
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Solid state drive (SSD)

Architecture of a SSD
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Solid state drive (SSD)

HDD vs. SSD
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Solid state drive (SSD)

HDD vs. SSD
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Interconnecting Components

Need interconnections between

• CPU, memory, I/O controllers

Bus: shared communication channel

• Parallel set of wires for data and synchronization of data 
transfer

• Can become a bottleneck

Performance limited by physical factors

• Wire length, number of connections

More recent alternative: high-speed serial connections with 
switches

• Like networks
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Typical x86 PC I/O System
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Sun Fire x4150 1U server

4 cores 
each

16 x 4GB = 
64GB DRAM


