COMPUTER ARCHITECTURE
REVIEW

COMPUTER ABSTRACTIONS AND TECHNOLOGY

Jo, Heeseung

I Below Your Program

Hardware

\.\Ga’ﬂo NS So fl‘we
/r

* Processor, memory, I/0 controllers o

System software

e Compiler: translates HLL code
to machine code

e Operating System: service code
- Handling input/output
- Managing memory and storage

- Scheduling tasks & sharing
resources

Application software

 Written in high-level language

I Levels of Program Code

High-level language

 Level of abstraction closer to
problem domain

 Provides for productivity and
portability

Assembly language

« Textual representation of
instructions

Hardware representation
e Binary digits (bits)

« Encoded instructions and data

High-level
language
program

(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;

temp = v[k];

vik] = vik+l];

v k+1] = temp;:
}

swap:

muli $2, $5,4
add $2, $4.,%2
Tw $15, 0(%$2)
Tw $16, 4(%2)
SW $16, 0($2)
SW $15, 4(%$2)
jr $31

Assembler

000000001010000100000000000L1000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

I Components of a Computer

Same components for \ Gompler
all kinds of computer .
* Desktop, server, embedded ertace g

Input/output includes

Computer

« User-interface devices
- Display, keyboard, mouse

 Storage devices h
- Hard disk, CD/DVD, flash am@mg

performance

W@y Datapath
’”’“
g l-

Processor

3
e

 Network adapters

- For communicating with
other computers

ARITHMETIC FOR COMPUTERS

Jo, Heeseung

I Integer Addition

Example: 7 + 6

SiHHNRN

0 (0) 0 0 1 (1) 1 (1) 0

Overflow if result out of range
« Adding +ve and -ve operands, no overflow
« Adding two +ve operands
- Overflow if result sign is 1
« Adding two -ve operands

- Overflow if result sign is 0

I Integer Subtraction

Add negation of second operand
Example: 7 - 6 = 7 + (-6)

+/: 0000 0000 .. 0000 0111
-6: 1111 1111 .. 1111 1010
+1: 0000 0000 .. 0000 0001

Overflow if result out of range
 Subtracting two +ve or two -ve operands, no overflow
e Subtracting +ve from -ve operand
- Overflow if result sign is 0
e Subtracting -ve from +ve operand

- Overflow if result sign is 1

I Representation of Negative

Numbers

Negative Integers

Positive

Integers Sign and 2's Complement | 1's Complement
+N (all systems) —N Magnitude N* N
+0 0000 -0 1000 - 1111
+1 0001 —1 1001 1111 1110
+2 0010 —2 1010 1110 1101
+3 0011 -3 1011 1101 1100
+4 0100 —4 1100 1100 1011
+5 0101 -5 1101 1011 1010
+6 0110 -6 1110 1010 1001
+7 0111 —7 1111 1001 1000

-8 - 1000 -

10

I Floating Point

Representation for non-integral numbers

e Including very small and very large numbers
Scientific notation

e +0.002 x 10 —
e +987.02 x 109 —

not normalized

In binary

o F1.XXXXXXX, x 2Y¥¥Y

Types float and double in C

11

I Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of representations
« Portability issues for scientific code

Now almost universally adopted

Two representations
e Single precision (32-bit)
 Double precision (64-bit)

12

§ IEEE Floating-Point Format

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
S| Exponent Fraction

X = (_1)5 < (1_|_ Fraction) % 2(Exponent—Bias)

S: sign bit (@ = non-negative, 1 = negative)
Normalize significand: 1.0 =< |significand] < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

e Significand is Fraction with the "1." restored
Exponent: excess representation: actual exponent + Bias

« Ensures exponent 1s unsigned

e Single: Bias = 127; Double: Bias = 1203

I Floating-Point Example

Represent -0.75

.+ -0.75 = (-1)! x 1.1, x 21

Exponent

Fraction

- S=1
- Fraction = 1000..00,
« Exponent = -1 + Bias
- Single: -1 + 127 = 126 = 01111110,
- Double: -1 + 1023 = 1022 = 01111111110,
Single: 1011111101000..00

Double: 1011111111101000..00

14

I Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

« S=1
- Fraction = 01000..00,
* Exponent = 10000001, = 129

X = (_1)1 x (1 + @12) x 2(129 - 127)
= (-1) x 1.25 x 22
= =-5.0

S

Exponent

Fraction

I Single-Precision Range

Exponents 00000000 and 11111111 reserved

Smallest value S

Exponent

Fraction

 Exponent: 00000001
— actual exponent = 1 - 127 = -126

 Fraction: 000..00 — significand = 1.0
e 1.0 x 27126 = +1.2 x 1038
Largest value

« exponent: 11111110
= actual exponent = 254 - 127 = +127

 Fraction: 111..11 = significand = 2.0
e 12.0 x 2*127 = £3.4 x 10*3#

I Double-Precision Range

Exponents 0000..00 and 1111..11 reserved

Smallest value S

Exponent

Fraction

 Exponent: 00000000001
= actual exponent = 1 - 1023 = -1022

 Fraction: 000..00 — significand = 1.0
e 11.0 x 271022 = 42,2 x 107308

Largest value
« Exponent: 11111111110

= actual exponent = 2046 - 1023 = +1023

 Fraction: 111..11 = significand = 2.0

e +2.0 x 2+1023 = +71.8 x 10+308

THE PROCESSOR

Jo, Heeseung

I Instruction Set

The repertoire of instructions of a computer
Different computers have different instruction sets
e But with many aspects in common
Early computers had very simple instruction sets
« Simplified implementation

Many modern computers also have simple instruction sets

19

I Translation and Startup

C program

Assembly language program

Assembler

Many compilers produce object
modules directly

Object: Machine language module

Object: Library routine (machine language)

Executable: Machine language program

Memory

> Static
linking

20

I CPU Overview

How to make a better CPU?

Add

A J

A

Add

Address Instruction

Instruction
memory

 J

—

Data

Register #
Registers

Register #

Register #

 J

Address

Data
memory

Data

21

I Pipelining Analogy

Pipelined laundry: overlapping execution

e Parallelism improves performance

Four loads:

* Speedup
= 8/3.5 = 2.3

Non-stop:

* Speedup
= 4
= number of stages

I Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' ' | | I | I | |
(in instructions)
Instructi Dat
Iw $1’ 100($0) nsf;fhlon Reg| ALU ac:egs Reg
Instructi Dat
lw $2, 200($0) 800 ps nsf:tfhlon Reg| ALU acseZS Reg
Instruction

lw $3, 300($0) 800 ps fetch

)) 800 ps

Pipelined (T.= 200ps)
Program
execution T 200 400 600 800 1000 1200 1400
Ime T T T T T T T
order
(in instructions)
Instructi Dat

lw $1, 100($0) nsf;l:ghlon Reg| ALU ac:lezs Reg
W $2,200(80) 200 ps | "ien | [Re9| AU | coess |Red
w $3, 300($0) 200 ps | "iaen | [Rea| AL | e |Res

200 ps 200 ps 200 ps 200 ps 200 ps

23

I Hazards

Situations that prevent starting the next instruction in the next
cycle

Structure hazards
A required resource is busy

Data hazard

 Need to wait for previous instruction to complete its data
read/write

Control hazard

« Deciding on control action depends on previous instruction

24

I Structure Hazards

Conflict for use of a resource
If MIPS pipeline uses a single memory (1 inst/data memory)
« Load/store requires data access

e Instruction fetch would have to stall for that cycle

- Would cause a pipeline "bubble"

Hence, pipelined datapaths require separate instruction/data
memories

« Or separate instruction/data caches

|—> Data
Register #
= PC [¢» Address Instruction |4 Registers ALU Address

Register #

Data
memory

Instruction
memory Register #

» Data

I Data Hazards

An instruction depends on completion of data access by a previous
instruction

add $s0, $to, $t1
sub $t2, $s0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I >

[
add $s0, $t0, $t1 | IF —= 1D EEﬂMEM WB |
bubble bubble (" bubble bubble) (" bubble
@ @ O @ O
bubble bubble) (" bubble bubble,) (bubble
a @ @, @ @

sub $t2, $s0, $t3 IF —E ID %*MEM WBE

26

I Forwarding (aka Bypassing)

Use result when it is computed
« Don't wait for it to be stored in a register

 Requires extra connections in the datapath

Program
execution
order Time

(in instructions)
add $s0, $t0, $t1

sub $t2, $s0, $t3

200 400 600 800 1000

MEM WB |

27

I Load-Use Data Hazard

Can't always avoid stalls by forwarding
e If value not computed when needed

e Can't forward backward in time!

Program
execution 200 400 600 800 1000 1200 1400

order Time . :
(in instructions) I
lw $s0, 20($t1) IF —=5 1D SEX—MEM

MEM|—{ WB |

sub $t2, $s0, $t3

I Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the next instruction

Tw $tl, 0($t0) Tw $t1l, 0($t0)

w (5t2)-4(5t0) w (5t2)
B —add $t3, $tL(St2) L w

sw $t3, 12($t0) add $t3,
Tw @ 8($t0) sw $t3,
EO——add $t5, $t1,(5t4) add $t5,
sw $t5, 16($t0) sw $t5, 16($t0)

29

I Control Hazards

Branch determines flow of control
« Fetching next instruction depends on branch outcome
« Pipeline can't always fetch correct instruction
- Still working on ID stage of branch
In MIPS pipeline
 Need to compare registers and compute target early in the pipeline

« Add hardware to do it in ID stage

30

I Stall on Branch

Wait until branch outcome determined before fetching next
instruction

Program
execution Tim 200 400 600 800 1000 1200 1400 -
order ime T T l T T T T -
(in instructions)

add $4,85,86 "] [Rea| AW | G2 |Reg

Instruction Data
beq $1, $2, 40 m fetch Reg| ALU | ccess |Fe9
bubble/_bubble/(bubble/bubble/(bubble
@ @ © @
or $7, $8, $9 < »Instruction Data
y 400 ps fetch Reg| ALU access |9

31

I Branch Prediction

Longer pipelines can't readily determine branch outcome early
« Stall penalty becomes unacceptable

Predict outcome of branch
 Only stall if prediction is wrong

In MIPS pipeline
« Can predict branches not taken

 Fetch instruction after branch, with no delay

32

§ MIPS with Predict No

t Taken

A

Program
execution Time 200 400 600 800 1000 1200 1400
order ' ! ' ' ' ' '
(in instructions)
Instruction Data
Prediction add $4, $5, $6 tetch Reg| ALU acoess | FEG
Instruction Data
correct beq $1,82,40 = ——+ el Reg| ALU | -2 |Reg
~—— | |nstruction Data
w $3, 300(30) 200 ps fe;]c:hI Reg| ALU access Reg
Y

Program
execution T 200 400 600 800 1000 1200 1400
Order T I 1 I I I I
(in instructions)
Instruction Data
PFEdiCtion add $4, $5, $6 fetch Reg ALU access Reg
1 Instruction Data
incorrect beq $1, $2, 40 «m- P Reg| ALU | =9 |Reg
bubble/ bubbl ubbl ubble/(bubble
@
—or $7, $8, $9 < »l|nstruction Data
v 400 ps fetch Reg | ALU access | 19

33

I More-Realistic Branch Prediction

Static branch prediction
« Based on typical branch behavior
« Example: loop and if-statement branches
- Predict backward branches taken
- Predict forward branches not taken
Dynamic branch prediction
« Hardware measures actual branch behavior
- e.g., record recent history of each branch
e Assume future behavior will continue the trend

- When wrong, stall while re-fetching, and update history

34

L ARGE AND FAST: EXPLOITING MEMORY
HIERARCHY

Jo, Heeseung

I Memory Technology

Static RAM (SRAM)

e 0.5ns — 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM)

e 50ns — 70ns, $20 — $75 per GB

wn
(9]
=
=
>
—+
R
(@)
Q.
(=
(@]
—+
=
(@)
>

Magnetic disk

 5ms — 20ms, $0.20 — $2 per GB
Ideal memory

e Access time of SRAM

e Capacity and cost/GB of disk

36

I Registers vs. Memory

MAIN MEMORY SYSTEM HIGH PERFORMANCE DISK SYSTEM
L1 CACHE LAST LEVEL CACHE . ' ' :
SRAM EDRAM E DRAM PCM . E FLASH HARD DRIVE E
T+ ——+——— &t
21 23 25 2? E 29 211 ' 213 215 J 21? 219 221 223 '

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

Qureshi (IBM Research) et al., Scalable High Performance Main Memory System Using
Phase-Change Memory Technology, ISCA 2009.

37

I Principle of Locality

Programs access a small proportion of their address space at any
time
Temporal locality
« Items accessed recently are likely to be accessed again soon
e e.g., instructions in a loop, induction variables
Spatial locality
« Items near those accessed recently are likely to be accessed soon

« E.g., sequential instruction access, array data

38

I Taking Advantage of Locality

Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby) items from disk to smaller
DRAM memory

 Main memory

Copy more recently accessed (and nearby) items from DRAM to
smaller SRAM memory

 Cache memory attached to CPU

39

I Memory Hierarchy Levels

Block (aka line): unit of copying
e« May be multiple words
If accessed data is present in upper level

« Hit: access satisfied by upper level

- Hit ratio: hits/accesses

If accessed data is absent

Processor

A

e Miss: block copied from lower level
- Time taken: miss penalty

- Miss ratio: misses/accesses
= 1 - hit ratio

« Then accessed data supplied from upper level

Data is transferred

40

(Vo]
O]
I Cache Memory 4
=
Cache memory °
Q
e The level of the memory hierarchy closest to the CPU E’
(V]
Given accesses Xi, ., X, 1, X, o
&
S
X4 X4 8
X4 X,
X, o X o How do we know if the data
1s present?
Xn—1 Xn—‘]
X, X2
X, Where do we look?
X3 Xa

a. Before the reference to X,, b. After the reference to X,,

41

I Direct Mapped Cache

Location determined by address

Direct mapped: only one choice
 (Block address) modulo (#Blocks in cache)

o
&
o
=
®

000
001
010
011
100
101
110
111

=
> 4

)

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Num. of Blocks is a
power of 2

Use low-order
address bits

42

I Tags and Valid Bits

How do we know which particular block is stored in a cache
location?

« Store block address as well as the data

e Actually, only need the high-order bits
 (Called the tag

What if there is no data in a location?

e Valid bit: 1 = present, @ = not present
« Initially 0@

43

I Address Subdivision

Hit

Address (showing bit positions)

Data

3130 --- 131211--:2 10
Byte
offset
420 410
Tag
Index
Index Valid Tag Data
0
1
2
1021
1022
1023
420 .32
(=

44

I Virtual Memory

Use main memory as a '"cache" for secondary (disk) storage
 Managed jointly by CPU hardware and the operating system (0S)

Programs share main memory

(Vo))
ul
N
<
e
S
—+
c
Q
'—I
=
0]
=]
(@]
)

<

 Each gets a private virtual address space holding its frequently
used code and data

 Protected from other programs

CPU and 0S translate virtual addresses to physical addresses
« VM "block" is called a page

« VM translation "miss" is called a page fault

Virtual address <-> Physical address

(App. view) (Managed by kernel)

45

I Address Translation

Fixed-size pages (e.g., 4K)

Virtual addresses

Physical addresses

i

(N
e
o~

T‘\

Disk addresses

Virtual address

3130292827 «vvveeeeernvnneann. 1514131211 1098 ----vvov-- 3210

Virtual page number Page offset

Lo Rl Doy AR TTT Y 15141312111098 oo 3210

Physical page number Page offset

Physical address

46

I Page Fault Penalty

Page faults

 Referencing a virtual address
in an evicted page

On page fault, the page must be fetched from disk
« Takes millions of clock cycles
 Handled by 0S code

Try to minimize page fault rate
 Fully associative placement

 Smart replacement algorithms

47

I Page Tables

Stores placement information
 Array of page table entries, indexed by virtual page number
 Page table register in CPU points to page table in physical memory
If page is present in memory
« PTE stores the physical page number
e Plus other status bits (referenced, dirty, ..)
If page 1s not present

« PTE can refer to location in swap space on disk

48

Translation Using a Page Table

Page table register

Virtual address

31 30 29 28 27 -ctciiititaiiaiiiicnnans 15 14 13 12 11 10 9 8§ «-++---- 3210

Virtual page number

Page offset

\20 \12
Valid Physical page number
® []
Page table

r 418
If 0 then page is not
present in memory
D9 D8 D7 eeerarrarsntanrrnsirsinanenasd -»15 14 13 12 11 10 9 8}----- 3210

Physical page number

Page offset

Physical address

I Mapping Pages to Storage

Virtual page
number

Page table
Physical page or Physical memory

Valid disk address

Il

\

,

-
|

A

Disk storage

N
s\;

\
AN
/

|
—_ O = = | O =t [= | O | =t | =b [=
A

R
/

I Fast Translation Using a TLB

Address translation would appear to require extra memory
references

 One to access the PTE
« Then the actual memory access
But access to page tables has good locality
 So use a fast cache of PTEs within the CPU
« Called a Translation Look-aside Buffer (TLB)

e Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100 cycles for miss,
0.01%-1% miss rate

. Misses could be handled by hardware or software

51

I Fast Translation Using a TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address

| |
1{0[1 .
111 o~ Physical memory
T[1]1 D —— p
1(0]1 o
0[0][0 T~
1[{0[1 .

Page table

Physical page

Valid Dirty Ref or disk address

-
'

Disk storage

—|O|—=|=|O|O|0O|0|O|O|0|0O
= O == | O == O =[O —

STORAGE AND OTHER I/0 ToPICS

Jo, Heeseung

I Introduction

I/0 devices can be characterized by

« Behaviour: input, output, storage

wn
()}
[N
—
>
—+
)
o
(@
c
(@)
—+
=
o
>

« Partner: human or machine

 Data rate: bytes/sec, transfers/sec

I/0 bus connections

Interrupts

Processor ~

Cache

Memory-I/O Interconnect

Main I/0 I/0 I/O
memory controller controller controller

—— L
Graphics Network
Disk Disk output

54

I Disk Storage

Nonvolatile, rotating magnetic storage

wn
(@)
(99
O
.
(%)
>
(9]
—+
o
R
QD

(o]
(©)

cylinder

55

I Disk Sectors and Access

Each sector records

Sector ID
Data (512 bytes, 4096 bytes proposed)
Error correcting code (ECC)

- Used to hide defects and recording errors

Synchronization fields and gaps

Access to a sector involves

Queuing delay if other accesses are pending
Seek: move the heads
Rotational latency
Data transfer

Controller overhead

56

I Disk Access Example

Given

« 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer
rate, 0.2ms controller overhead, idle disk

Average read time

 4ms seek time
+ % / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time 1is 1ms

« Average read time = 3.2ms

57

I Disk Performance Issues

Manufacturers quote average seek time
« Based on all possible seeks

« Locality and 0S scheduling lead to smaller actual average seek
times

Smart disk controller allocate physical sectors on disk
 Present logical sector interface to host
« SCSI, ATA, SATA

Disk drives include caches
 Prefetch sectors in anticipation of access

« Avoid seek and rotational delay

58

I Flash Storage

Nonvolatile semiconductor storage
¢ 100x — 1000x faster than disk
* Smaller, lower power, more robust
e But more $/GB (between disk and DRAM)

w
o))
I
M
'—I
Y}
wn
=>
(V)]
—~+
(@)
S
(Y]

Q
(@)

SUnEA 2D s viarmonn

« Ultra
4 2.008 Macsc Qare”

59

I Flash Types

NOR flash: bit cell like a NOR gate
- Random read/write access
« Used for instruction memory in embedded systems
NAND flash: bit cell like a NAND gate
 Denser (bits/area), but block-at-a-time access
* Cheaper per GB
« Used for USB keys, media storage, ..
Flash bits wears out after 1000's of accesses
 Not suitable for direct RAM or disk replacement

« Wear leveling: remap data to less used blocks

60

I Solid state drive (SSD)

Architecture of a SSD

RAM buffer

Flash Flash

memory memory
SSD Controller package #0 package #1
Y
Host i i Channel #0
connection Host Processor [«—»

Interface Flash

. Channel #1
Logic - controller * *

Buffer
|_manager

Flash Flash
memory memory

package #2 package #3

I Solid state drive (SSD)

Architecture of a SSD

SSD ZEE2 W Z3N H2

CEED o
DRAM(ZHAI)

62

Solid state drive (SSD)

HDD vs. SSD

a2 I’A)

ares. A3 [K"' w1

2 e 1110 M
oot) + 38
m

. e ", -‘,,\uu
i mmu S (
...,N

- s = 4 P
({. ‘ :‘3 - >

63

I Solid state drive (SSD)

HDD vs. SSD

Solid State Drive

—at

Hard Disk Drive

64

I Interconnecting Components

Need interconnections between
« CPU, memory, I/0 controllers
Bus: shared communication channel

 Parallel set of wires for data and synchronization of data
transfer

 Can become a bottleneck
Performance limited by physical factors
 Wire length, number of connections

More recent alternative: high-speed serial connections with
switches

mouse keyboard printer ~ monitor

disks

e« Like networks 88 é R

N |/

USB controller

wn
(@)}
Ul
(@)
(@)
>
>
(¢»)
(@]
—+
=
>
(@)
)
-
o
(@]
(@)
n
n
(@)
D)
n
-
=
(0]
=
(@)
)
<
-
Q
>
o
|
S~
(@)
(e
(@)
<
=
(@]
(@)
wn

disk
controller

graphics

Gt adapter

memory

65

d Typ

x86 PC I/0 System

fmm e ————
Intel Xeon 5300 | Intel Xeon 5300 |
processor ! processor |

[- T

Front Side Bus (1333 MHz, 10.5 GB/sec)

FB DDR2 667
(5.3 GB/sec) PCle x16 (or 2 PCle x8)
Main (4 GB/sec)
memory
DIMMs
) SeralATA |(> Gaisecyl2 6B/
era 2 GB/sec)|(2 GB/sec
—] (300 MB/sec))
Disk
PCle x4
— (1 GB/sec)
PCle x4
— (1 GB/sec)
Disk PCI-X bus
— LPC (1 GB/sec)
Keyboard (1 MB/sec) PCI-X bus
mouse, ... (1 GB/sec)
USB 2.0 Parallel ATA
(60 MB/sec)

(100 MB/sec) CD/DVD

Sun Fire x4150 1U

Server

Intel Xeon
5100/5300

Intel Xeon

/ 5100/5300

4 cores

each

16 x 4GB

B2
B1
BO

FSB

1333 MT/s

DIMMs

Channel B

10.5 GB/s

Dual FSB
to MCH

FsB
1333 MT/s

co
c1
c2
c3

64GB DRAM

Channel C

5.3 GB/s

D

5.3 GB/s
Channel D

IMMs

Channel A

A3
A2
A1l
A0

PCI-E x4

PCI-E

DIMMs

ESI (PCI-E)

PCI-E x8
PCI-E x8
PCI-E x8

ASPEED
AST2000

Q62611.1 GP
0608 TAN az

POLE x16 - 2 []
POLE x16 - 1 []
POLE x16 - 0 [e |

CD/DVD

1x Internal
USB 2.0

2x Rear
USB 2.0

2x Front
USB 2.0

2x 1GB
Ethernet
2&3

2x 1GB
Ethernet
0&1

Serial
RJ-45

Management
10/100
Ethernet

' VGA
" Video

67

